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Warning

WORK IN PROGRESS
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Lightcone Wave functions

0 5zt =204273

Lightcone quantization : z

Lightcone-QCD allows decomposition of hadrons in Fock states:

Pm) o< > W¥qg) + Y Wi qq, q3) + ...

5 5
P, N) oc Y Wiqqq) + > VI qqq,q5) + . ..
5 5

Often restricted to the first term, i.e. W?f’ and lllgqq.

Schematically (disregarding twist decomposition), the DA ¢:

d?k
o(x) x QT)J‘z\U(x, ki)
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Evolution

@ DA are scale dependent objects

@ They obey evolution equation and can be written as:

§ §
(X, 12) = @25(x) [ 1+ Z 2,21 (x)

j=24...

Efremov and Radyushkin (1980)
Lepage and Brodsky (1980)

At large enough scale, one expects ¢ ~ pas )
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Evolution

@ DA are scale dependent objects

@ They obey evolution equation and can be written as:

§ §
ox(x, 12) = 925 (x) 1+Z 2,21 (x)
j=24...

Efremov and Radyushkin (1980)
Lepage and Brodsky (1980)

At large enough scale, one expects ¢ ~ pas )

Caveat J

What does large enough mean?
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Fock space at high Q2

L B==

F(Q?) ~ / [dx][dyle* () T(x. y)(x)

o At large Q2

@ Higher Fock states suppressed by <O‘5(Q )) per additional constituent.
@ T can be computed through perturbation theory.
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From DA to Form factors

@ Pion case:
QzFﬂ(Qz) = 167ra5(Q2)f7rw3; for large enough Q?

with

1 2
w(p = g /chp(X;(Q ), WAs = 1

Farrar and Jackson (1979),
Efremov and Radyushkin (1980),
Lepage and Brodsky (1980).
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From DA to Form factors

@ Pion case:
QzFﬂ(Qz) = 16ﬂas(Qz)fﬁwi for large enough Q?

with

1 2
w<p = g /ngD(X;(Q ), WAs = 1

Farrar and Jackson (1979),
Efremov and Radyushkin (1980),
Lepage and Brodsky (1980).
@ Proton case:
» same reasoning but absolute normalisation unknown,
» when assuming isospin symmetry, the ratio between the magnetic form
factors of the proton and neutron can be predicted.
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Pion distribution amplitude

Pas(x) =6x(1 — x)

1.5F

1.0f

$x(X)

0.5+

%0 025 050 075 1.0

X

Chang et al. (2013)
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Pion distribution amplitude

Pas(x) =6x(1 — x)
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Pion distribution amplitude

Pas(x) =6x(1 — x)

1.5F
_ 1.0t (8 )
3 =
< 5

0.5+

%0 025 050 075 1.0

X

Chang et al. (2013) Chang et al. (2013)

@ Broad DSE pion DA is much more consistent with the form factor
than the asymptotic one.
@ The scale when the asymptotic DA become relevant is huge.
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Proton distribution amplitude

was(x1, X2, x3) = 120x1X2x3
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Proton distribution amplitude

vas(x1, X2, x3) = 120x1X2x3
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Proton distribution amplitude

vas(x1, X2, x3) = 120x1X2x3
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Proton distribution amplitude

2 T T T
(xi» Q) ~(xx2x3)”
I -
, c=
L oot
a3
(&)
- _l B
6B <01Gh>0
l _M. (b)
! -2 |' | 1
0 I 2 3 4
0 02 03 es 05 0s 07 ox oo n
Pas(x1,x2, x3) = 120x1%0%3 Lepage and Brodsky (1980)
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Proton distribution amplitude

2 T T T
(xi» Q) ~(xx2x3)”
I -
c3
3 { ok
a3
(&)
=1 _l B
) -2
o
Pas(x1,x2, x3) = 120x1%0%3 Lepage and Brodsky (1980)

What happen when computing the Proton DA within DSEs framework? J

C. Mezrag (Argonne National Laboratory Nucleon DA April 21th, 2016 8/24



Quark-diquark degrees of freedom

e Interactions generating meson also generate diquarks in a 3-colour
state.
@ Two types of diquark correlations inside the nucleon:

» Scalar diquarks.
» Axial-Vector diquarks.

Cahill et al., (1987)

@ This allow to solve a simplified Faddeev equation...

@ .. and to compute in the DSE framework of different baryon
observables, including the nucleon form factors.

We would like to apply this approximation to compute nucleon DA. )
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Leading Twist Nucleon DA

@ Parameterisation of non-local matrix element in 24 invariant functions:
<0!6UkUL(21)uJ5( 2,)d¥(z3)|P)
1 _ _
= Z [(PC)QB (75N+)'y V(Zi )+ (P75C)a/8 (N+)'yA(zf )
— (ip" o C)aﬁ (fy'/%NJr)7 T(zi_)} + higher twist.

Braun et al. 2000
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Leading Twist Nucleon DA

@ Parameterisation of non-local matrix element in 24 invariant functions:
(Ol u(21)uy(22) 5 (23)| P)
= 1 [(O)s (sN™) V() + (p15C)., (NF) AT
—(ip"01 C) 4 (VV’Y5N+)7 T(zi_)} + higher twist.

Braun et al. 2000
@ Nucleon leading twist DA defined as:

o(xi) = V(xi) — A(xi)
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Matrix element of the leading twist DA

@ Definition of the leading twist DA in terms of matrix element:
(Ol (ui(21) C2u](22)) 2 (25)|P)

1 .
- _2(P'Z)¢NT/DXISD(XLX2,X3)e_'z"x"P'z"-

» quark of given chirality: g™ = li%q

» momentum conservation: Dx; = dx;0(1 — x; — xo — x3)
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Matrix element of the leading twist DA

@ Definition of the leading twist DA in terms of matrix element:
(Ol (ui(21) C2u](22)) 2 (25)|P)

1 .
- _2(P'Z)¢NT/DXISD(Xl,X2,X3)e_'z"x"P'z"-

» quark of given chirality: g™ = li%q
» momentum conservation: Dx; = dx;0(1 — x; — xo — x3)

@ This matrix element suggests:
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Matrix element of the leading twist DA

@ Definition of the leading twist DA in terms of matrix element:
(Ol (ui(21) C2u](22)) 2 (25)|P)

1 .
- _2(P'Z)¢NT/DXISD(Xl,X2,X3)e_'z"x"P'z"-

» quark of given chirality: g™ = li%q
» momentum conservation: Dx; = dx;0(1 — x; — xo — x3)
@ This matrix element suggests:

» Axial-vector diquark correlation : (U%(Z]_)C#Ui(ZQ))
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Matrix element of the leading twist DA

@ Definition of the leading twist DA in terms of matrix element:
(Ol (ui(21) C2u](22)) 2 (25)|P)

1 .
- _2(p'z)#NT/DXiQD(XlaX27X3)e_,z'.XiP.Zi'

» quark of given chirality: g™ = li%q
» momentum conservation: Dx; = dx;0(1 — x; — xo — x3)
@ This matrix element suggests:
» Axial-vector diquark correlation : (U%(Z]_)C#Ui(ZQ))

» Interaction with the remaining quark d.
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Quark-Diquark DA

v 25 (L+9s)

3 (1=7)Cv- 25 (1+ )

Fd,uu Fur

@ Need of specific ingredients:
» quark propagator S, (S4),
» AV diquark propagator S,,,
» diquark Bethe-Salpeter amplitude I,
» nucleon Bethe-Salpeter amplitude I4.,,,.
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Quark-Diquark DA

v 25 (L+9s)

3 (1=7)Cv- 25 (1+ )

Fd,uu Fur

@ Need of specific ingredients:
» quark propagator S, (S4),
» AV diquark propagator S,,,
» diquark Bethe-Salpeter amplitude I,
» nucleon Bethe-Salpeter amplitude I4.,,,.

All these objects can be computed non-pertubatively using DSEs-BSEs. J
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Nakanishi representation: Quark-Diquark Amplitude

@ quark propagator:

—iv-q+ M
Sq(q)zw

@ diquark propagator:

1 KHKY
Sqq(K) = K2 v (5uu + KT )
o Nakanishi representation for the quark-diquark Bethe-Salpeter
Amplitude:
M 1 1
Au(K.P) = insP W20 [ dzp(2) y
T ((K=52P)" +n3)
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Nakanishi representation: Diquark Amplitude

@ Quark propagator:

—iv-q+ M

Sq(q) = q2 T M2
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Nakanishi representation: Diquark Amplitude

@ Quark propagator:

—iv-q+ M
q2+M2

Sq(q) =

@ Point-like Bethe-Salpeter Amplitude:

- M, - K
Fu:/fmCTMz , WM:'yM—K—’;fy-K
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Nakanishi representation: Diquark Amplitude

@ Quark propagator:

—iv-q+ M
q2+M2

Sq(q) =
@ Point-like Bethe-Salpeter Amplitude:
- M, - K
ru:"YuCTMz , ’yM:'yM—K—’;fy-K
o Extended Bethe-Salpeter Amplitude:

Mg, K) =i CMM”/Hde (2) !
p\ W=F i v ((q_l ZK) +/\2)
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A point-like diquark?

@ The DA resulting from a point-like BS ampltitude presents two main
features:

» a “flat” contribution,

» an “asymptotic-like".
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A point-like diquark?

@ The DA resulting from a point-like BS ampltitude presents two main

features:

» a “flat” contribution, — Point-like DA
— Asymptotic DA

» an “asymptotic-like".

02 04 06 08 10
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A point-like diquark?

@ The DA resulting from a point-like BS ampltitude presents two main

features:

» a “flat” contribution, — Point-like DA
— Asymptotic DA

» an “asymptotic-like".

02 04 06 08 10

@ We expect this to affect the Nucleon DA in our quark-diquark
approach.
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Mellin moments approach

@ Computation of the Mellin moment of the nucleon DA:

o(n1, np, n3) = /@Xi X1 X2 x5 (X1, X2, X3)
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Mellin moments approach

@ Computation of the Mellin moment of the nucleon DA:

o(n1, np, n3) = /@Xi X1 X32 X352 (X1, X2, X3)

@ 3D Mellin Transform — one can expect hard time to inverse it...
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Mellin moments approach

@ Computation of the Mellin moment of the nucleon DA:
@(m, np,m) = /@Xi X1 X2 X33 p(x1, X2, X3)
@ 3D Mellin Transform — one can expect hard time to inverse it...

@ ... but momentum conservation (§(1 — x3 — x2 — x3)) reduce the
problem to a 2D transform.
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Mellin moments approach

@ Computation of the Mellin moment of the nucleon DA:
@(ny, 2, n3) = /DXI X1 X2 X33 p(x1, X2, X3)

@ 3D Mellin Transform — one can expect hard time to inverse it...

@ ... but momentum conservation (§(1 — x3 — x2 — x3)) reduce the
problem to a 2D transform.

® ¢(1,0,0) +4(0,1,0) +©(0,0,1) = ¢(0,0,0).
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@ 3D Mellin Transform — one can expect hard time to inverse it...

@ ... but momentum conservation (§(1 — x3 — x2 — x3)) reduce the
problem to a 2D transform.

® ¢(1,0,0) +4(0,1,0) +©(0,0,1) = ¢(0,0,0).

It is possible to analytically invert the Mellin Transform. J
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Mellin moments approach

@ Computation of the Mellin moment of the nucleon DA:
@(ny, 2, n3) = /@Xi X1 X2 X33 p(x1, X2, X3)

@ 3D Mellin Transform — one can expect hard time to inverse it...

@ ... but momentum conservation (§(1 — x3 — x2 — x3)) reduce the
problem to a 2D transform.

® ¢(1,0,0) +4(0,1,0) +©(0,0,1) = ¢(0,0,0).

It is possible to analytically invert the Mellin Transform. J

Analytical results for very simple Ansitze. J
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Result 1: Point-like diquark

4PPL(X1a X2, X3)

opL(x1, X2, x3) — @as(x1, %2, x3)

0.1 02 03 04 05 06 07 08 09 01 02 03 04 05 0.6 07 08 09
[m] = = = = QR
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Result 1: Point-like diquark

ppL(x1,X2,X3) ©pL(x1, X2, Xx3) — pas(x1, x2, x3)

01 02 03 04 05 06 07 08 09

01 02 03 04 05 06 07 08 09

o It looks almost symmetric and therefore close to the asymptotic
distribution. Very encouraging result.

Oy <3 - -
April 21th 2016 17 / 24
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Result 1: Point-like diquark

epL(x1, X2, X3) opL(x1, X2, x3) — @as(x1, %2, x3)

01 02 03 04 05 06 07 08 09

o It looks almost symmetric and therefore close to the asymptotic

distribution. Very encouraging result.

o Please notice:
» A feature of the point-like diquark: non-zero values for x; = 0 or

X2:0.
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Result 1: Point-like diquark

epL(x1, X2, X3) ©pL(x1, X2, Xx3) — pas(x1, x2, x3)

01 02 03 04 05 06 07 08 09

@ It looks almost symmetric and therefore close to the asymptotic

distribution. Very encouraging result.

o Please notice:
» A feature of the point-like diquark: non-zero values for x; = 0 or
Xy = 0.
» Slight unexpected sign change near x3 ~ 1.
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From point-like to asymptotic diquark

@ Change of the Bethe-Salpeter Amplitude:

‘o~ M 2v 1 1
Mg, K)= /'yNCTM / dz p,(z) . ;
-1 (- 52K)*+2)

@ For p oc (1 — z%) and v = 1, one recovers the asymptotic DA:
#(x) = 6x(1 —x)

Gao et al. (2014)

@ Doing so we lose sensitivity in AZ.
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From point-like to asymptotic diquark

@ Change of the Bethe-Salpeter Amplitude:

‘o~ M 2v 1 1
Mg, K)= /'yNCTM / dz p,(z) . ;
-1 (- 52K)*+2)

@ For p oc (1 — z%) and v = 1, one recovers the asymptotic DA:
#(x) = 6x(1 —x)

Gao et al. (2014)

@ Doing so we lose sensitivity in AZ.

Good second step! J
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Result 2: Extended Asymptotic-like Diquark

VEx(x1, %2, X3) VEx(x1, %2, x3) — pas(x1, %2, x3)

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

@ No more sign change and the DA vanishes on the edges.

@ Deform toward the large x3.
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Modification of the p function

Au(K,P) = iysP, IW"/:ldz/)o(Z) ((K_ 1221,,) +/\2>

o All the previous plots, p,(z) o (1 — z2)
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Modification of the p function

_ +1 1
Au(K, P) = insP MQ" | dznn(a)
—1

o All the previous plots, p,(z) o (1 — z2)

-1.0 -05
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Modification of the p function

Au(K,P) = ivsP I\_ﬂ%/_:ldng(z) ((K_ 1221P) +A2>

o All the previous plots, p,(z) o (1 — z2)

Modification of p to generate an asymmetric distribution of momentum J
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Preliminary result

@ More central than previously
e Still preliminary

@ It starts becoming numerically challenging

C. Mezrag (Argonne National Laboratory

Nucleon DA

10

April 21th, 2016
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Results summary

Asymptotic Extended diquark
Point-like Asymmetric extended diquark

C. Mezrag (Argonne National Laboratory Nucleon DA April 21"'. 2016 22 /24



Summary and conclusion

@ At high enough Q?, it is possible to compute the form factor through
the DA.

@ Results on the pion show that at available energy, the asymptotic DA
is not relevant for such a computation.

@ To compute the nucleon DA and see how it differs from the
asymptotic one.

@ We developed algebraic models as a first step.

@ Results are encouraging.
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Outlook

@ Short term outlooks:

Finish the algebraic computations.

» Numerical computation using solution of the DSEs.

» Comparison with lattice data

» Computation of the ratio of the proton and neutron magnetic form
factors.

v

@ Longer term outlooks — computations of other structure functions:

» Valence nucleon PDF.

» Valence nucleon GPD,
— following the methods highlighted in arXiv:1602.07722 for the pion.
— using the PARTON Software developed at Saclay (1512.06174).
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PARTONS Project

PARtonic
Tomography

Nucleon
Software

P%ﬁ'rdrvs of

«O0>» «F>» «E>»



PARTONS
status

Introduction

Towards 3D
Imaging

PARTONS
Project
Computing chain
Examples
Architecture

Team

Prospects
In progress

PARTONS_Fits

Conclusions

Members and areas of expertise

Network of developers, upstream contributors and users

Berthou Binosi

(Irfu) (ECT*)

2l ipsy Rille

PARTONS team

o4

Chouika Guidal Mezrag Moutarde Sabatié Sznajder Wagner

(Irfu) (IPNO)  (ANL) (Irfu) (Irfu) (IPNO)  (NCBJ)

Experimental data analysis Perturbative QCD
World data fits GPD modeling
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Computing chain design.

Cea Differential studies: physical models and numerical methods.
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Thank you for your attention!

C. Mezrag (Argonne National Laboratory Nucleon DA April 21"", 2016 25 /24




