## Nucleon Distribution Amplitudes

## C. Mezrag

Argonne National Laboratory

April 21th, 2016

In collaboration with: C.D. Roberts

April 21<sup>th</sup>, 2016

## Nucleon Distribution Amplitudes

## C. Mezrag

Argonne National Laboratory

April 21<sup>th</sup>, 2016

In collaboration with: C.D. Roberts

And some slides on GPDs also!

Nucleon DA

April 21<sup>th</sup>, 2016

# Warning



C. Mezrag (Argonne National Laboratory)

Nucleon DA

April 21<sup>th</sup>, 2016 2 / 24

э

# Lightcone Wave functions

- Lightcone quantization :  $z^0 \rightarrow z^+ = z^0 + z^3$
- Lightcone-QCD allows decomposition of hadrons in Fock states:

$$|P,\pi
angle\propto\sum_{eta}\Psi_{eta}^{qar{q}}|qar{q}
angle+\sum_{eta}\Psi_{eta}^{qar{q},qar{q}}|qar{q},qar{q}
angle+\ldots$$

$$|P,N
angle\propto\sum_{eta}\Psi_{eta}^{qqq}|qqq
angle+\sum_{eta}\Psi_{eta}^{qqq,qar{q}}|qqq,qar{q}
angle+\ldots$$

- Often restricted to the first term, *i.e.*  $\Psi_{\beta}^{q\bar{q}}$  and  $\Psi_{\beta}^{qqq}$ .
- Schematically (disregarding twist decomposition), the DA  $\varphi$ :

$$arphi(x) \propto \int rac{\mathrm{d}^2 k_\perp}{(2\pi)^2} \Psi(x,k_\perp)$$

# Evolution

- DA are scale dependent objects
- They obey evolution equation and can be written as:

$$\varphi_{\pi}(x,\mu^2) = \varphi_{\pi}^{As}(x) \left( 1 + \sum_{j=2,4...}^{\infty} a_j^{(\frac{3}{2})}(\mu^2) C_j^{(\frac{3}{2})}(x) \right)$$

Efremov and Radyushkin (1980) Lepage and Brodsky (1980)

April 21<sup>th</sup>, 2016

4 / 24

At large enough scale, one expects  $\varphi \simeq \varphi_{As}$ 

# Evolution

- DA are scale dependent objects
- They obey evolution equation and can be written as:

$$\varphi_{\pi}(x,\mu^2) = \varphi_{\pi}^{As}(x) \left( 1 + \sum_{j=2,4...}^{\infty} a_j^{(\frac{3}{2})}(\mu^2) C_j^{(\frac{3}{2})}(x) \right)$$

Efremov and Radyushkin (1980) Lepage and Brodsky (1980)



# Fock space at high $Q^2$



• At large  $Q^2$ ,

$$F(Q^2) \simeq \int [\mathrm{d}x] [\mathrm{d}y] \varphi^*(y) T(x,y) \varphi(x)$$

- Higher Fock states suppressed by  $\left(\frac{\alpha_S(Q^2)}{Q^2}\right)$  per additional constituent.
- T can be computed through perturbation theory.

## From DA to Form factors

• Pion case:

$$Q^2 F_{\pi}(Q^2) = 16 \pi \alpha_S(Q^2) f_{\pi} \omega_{\varphi}^2$$
 for large enough  $Q^2$ 

with

$$\omega_{arphi} = rac{1}{3}\int \mathrm{d}x rac{arphi(x,Q^2)}{x}, \quad \omega_{As} = 1$$

Farrar and Jackson (1979), Efremov and Radyushkin (1980), Lepage and Brodsky (1980).

イロト 不得下 イヨト イヨト 三日

April 21<sup>th</sup>, 2016

## From DA to Form factors

• Pion case:

$$Q^2 F_{\pi}(Q^2) = 16 \pi lpha_{\mathcal{S}}(Q^2) f_{\pi} \omega_{arphi}^2$$
 for large enough  $Q^2$ 

with

$$\omega_{arphi} = rac{1}{3}\int \mathrm{d}x rac{arphi(x,Q^2)}{x}, \quad \omega_{\mathcal{A}s} = 1$$

Farrar and Jackson (1979), Efremov and Radyushkin (1980), Lepage and Brodsky (1980).

April 21<sup>th</sup>, 2016

- Proton case:
  - same reasoning but absolute normalisation unknown,
  - when assuming isospin symmetry, the ratio between the magnetic form factors of the proton and neutron can be predicted.

$$\phi_{As}(x) = 6x(1-x)$$



Chang et al. (2013)

April 21th, 2016

$$\phi_{As}(x) = 6x(1-x)$$



Chang et al. (2013)

Chang et al. (2013)

April 21<sup>th</sup>, 2016 7 / 24

$$\phi_{As}(x) = 6x(1-x)$$



Chang et al. (2013)

Chang et al. (2013)

7 / 24

April 21<sup>th</sup>, 2016

- Broad DSE pion DA is much more consistent with the form factor than the asymptotic one.
- The scale when the asymptotic DA become relevant is huge.

Nucleon DA



 $\varphi_{As}(x_1, x_2, x_3) = 120x_1x_2x_3$ 

#### C. Mezrag (Argonne National Laboratory)

April 21<sup>th</sup>, 2016 8 / 24

э



 $\varphi_{As}(x_1, x_2, x_3) = 120x_1x_2x_3$ 

C. Mezrag (Argonne National Laboratory)

April 21<sup>th</sup>, 2016 8 / 24

э



 $\varphi_{As}(x_1, x_2, x_3) = 120x_1x_2x_3$ 

C. Mezrag (Argonne National Laboratory)

э

8 / 24

April 21<sup>th</sup>, 2016



 $\varphi_{As}(x_1, x_2, x_3) = 120x_1x_2x_3$ 

C. Mezrag (Argonne National Laboratory)

э

8 / 24

April 21<sup>th</sup>, 2016



 $\varphi_{As}(x_1, x_2, x_3) = 120x_1x_2x_3$ 

Lepage and Brodsky (1980)

Nucleon DA

April 21<sup>th</sup>, 2016 8 / 24



What happen when computing the Proton DA within DSEs framework?

April 21<sup>th</sup>, 2016 8 / 24

# Quark-diquark degrees of freedom

- Interactions generating meson also generate diquarks in a  $\bar{3}$ -colour state.
- Two types of diquark correlations inside the nucleon:
  - Scalar diquarks.
  - Axial-Vector diquarks.

Cahill et al., (1987)

- This allow to solve a simplified Faddeev equation...
- .. and to compute in the DSE framework of different baryon observables, including the nucleon form factors.

We would like to apply this approximation to compute nucleon DA.

# Leading Twist Nucleon DA

• Parameterisation of non-local matrix element in 24 invariant functions:

$$\begin{split} \langle 0|\epsilon^{ijk} u^{i}_{\alpha}(z_{1}) u^{j}_{\beta}(z_{2}) d^{k}_{\gamma}(z_{3})|P\rangle \\ &= \frac{1}{4} \left[ \left( \not p C \right)_{\alpha\beta} \left( \gamma_{5} N^{+} \right)_{\gamma} V(z^{-}_{i}) + \left( \not p \gamma_{5} C \right)_{\alpha\beta} \left( N^{+} \right)_{\gamma} A(z^{-}_{i}) \right. \\ &\left. - \left( i p^{\mu} \sigma_{\mu\nu} C \right)_{\alpha\beta} \left( \gamma^{\nu} \gamma_{5} N^{+} \right)_{\gamma} T(z^{-}_{i}) \right] + \text{higher twist.} \end{split}$$

Braun et al. 2000

April 21<sup>th</sup>, 2016 10 / 24

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

# Leading Twist Nucleon DA

• Parameterisation of non-local matrix element in 24 invariant functions:

$$\begin{aligned} \langle 0|\epsilon^{ijk} u^{i}_{\alpha}(z_{1}) u^{j}_{\beta}(z_{2}) d^{k}_{\gamma}(z_{3})|P\rangle \\ &= \frac{1}{4} \left[ \left( \not P C \right)_{\alpha\beta} \left( \gamma_{5} N^{+} \right)_{\gamma} V(z^{-}_{i}) + \left( \not P \gamma_{5} C \right)_{\alpha\beta} \left( N^{+} \right)_{\gamma} A(z^{-}_{i}) \right. \\ &- \left( i p^{\mu} \sigma_{\mu\nu} C \right)_{\alpha\beta} \left( \gamma^{\nu} \gamma_{5} N^{+} \right)_{\gamma} T(z^{-}_{i}) \right] + \text{higher twist.} \end{aligned}$$

Braun et al. 2000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

# Leading Twist Nucleon DA

• Parameterisation of non-local matrix element in 24 invariant functions:

$$\begin{aligned} 0|\epsilon^{ijk} u^{i}_{\alpha}(z_{1}) u^{j}_{\beta}(z_{2}) d^{k}_{\gamma}(z_{3})|P\rangle \\ &= \frac{1}{4} \left[ \left( \not p C \right)_{\alpha\beta} \left( \gamma_{5} N^{+} \right)_{\gamma} V(z_{i}^{-}) + \left( \not p \gamma_{5} C \right)_{\alpha\beta} \left( N^{+} \right)_{\gamma} A(z_{i}^{-}) \right. \\ &- \left( i \rho^{\mu} \sigma_{\mu\nu} C \right)_{\alpha\beta} \left( \gamma^{\nu} \gamma_{5} N^{+} \right)_{\gamma} T(z_{i}^{-}) \right] + \text{higher twist.} \end{aligned}$$

Braun et al. 2000

• Nucleon leading twist DA defined as:

$$\varphi(x_i) = V(x_i) - A(x_i)$$

< 口 > < 同 >

• Definition of the leading twist DA in terms of matrix element:

$$egin{aligned} &\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})C 
eq u^{j}_{\downarrow}(z_{2})
ight) 
eq d^{k}_{\uparrow}(z_{3})|P
angle\ &= -rac{1}{2}(p\cdot z)
eq N^{\uparrow}\int \mathcal{D}x_{i}arphi(x_{1},x_{2},x_{3})e^{-i\sum_{i}x_{i}P\cdot z_{i}}. \end{aligned}$$

- quark of given chirality:  $q^{\uparrow(\downarrow)} = \frac{1 \pm \gamma_5}{2} q$
- momentum conservation:  $\mathfrak{D}x_i = d\bar{x}_i \delta(1 x_1 x_2 x_3)$

・ロト・4日・4日・4日・日・990

April 21<sup>th</sup>, 2016 11 / 24

• Definition of the leading twist DA in terms of matrix element:

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1})C \neq u^{j}_{\downarrow}(z_{2})\right) \neq d^{k}_{\uparrow}(z_{3})|P\rangle \ = -rac{1}{2}(p\cdot z) \neq \mathcal{N}^{\uparrow} \int \mathfrak{D}x_{i}\varphi(x_{1},x_{2},x_{3})e^{-i\sum_{i}x_{i}P\cdot z_{i}}.$$

- quark of given chirality:  $q^{\uparrow(\downarrow)} = \frac{1 \pm \gamma_5}{2} q$
- momentum conservation:  $\mathfrak{D}x_i = d\bar{x}_i \delta(1 x_1 x_2 x_3)$
- This matrix element suggests:

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 臣 - ∽0へ⊙

• Definition of the leading twist DA in terms of matrix element:

$$\langle 0|\epsilon^{ijk} \left(u^{i}_{\uparrow}(z_{1})C \neq u^{j}_{\downarrow}(z_{2})\right) \neq d^{k}_{\uparrow}(z_{3})|P
angle \ = -rac{1}{2}(p\cdot z) \neq N^{\uparrow} \int \mathcal{D}x_{i}\varphi(x_{1},x_{2},x_{3})e^{-i\sum_{i}x_{i}P\cdot z_{i}}.$$

- quark of given chirality:  $q^{\uparrow(\downarrow)} = \frac{1 \pm \gamma_5}{2} q$
- momentum conservation:  $\mathfrak{D}x_i = d\bar{x}_i \delta(1 x_1 x_2 x_3)$
- This matrix element suggests:
  - Axial-vector diquark correlation :  $\left(u^{i}_{\uparrow}(z_{1})C \neq u^{j}_{\downarrow}(z_{2})\right)$

<ロト < 部 > < 書 > < 書 > 目 の Q (C) April 21<sup>th</sup>, 2016 11 / 24

• Definition of the leading twist DA in terms of matrix element:

$$egin{aligned} &\langle 0|\epsilon^{ijk}\left(u^{i}_{\uparrow}(z_{1})C 
eq u^{j}_{\downarrow}(z_{2})
ight) 
eq d^{k}_{\uparrow}(z_{3})|P
angle \ &= -rac{1}{2}(p\cdot z)
eq N^{\uparrow}\int \mathcal{D}x_{i}arphi(x_{1},x_{2},x_{3})e^{-i\sum_{i}x_{i}P\cdot z_{i}}. \end{aligned}$$

- quark of given chirality:  $q^{\uparrow(\downarrow)} = \frac{1 \pm \gamma_5}{2} q$
- momentum conservation:  $\mathfrak{D}x_i = d\tilde{x}_i\delta(1 x_1 x_2 x_3)$
- This matrix element suggests:
  - Axial-vector diquark correlation :  $\left(u^{i}_{\uparrow}(z_{1})C\neq u^{j}_{\downarrow}(z_{2})\right)$
  - Interaction with the remaining quark d.

# Quark-Diquark DA



- Need of specific ingredients:
  - quark propagator  $S_u$  ( $S_d$ ),
  - AV diquark propagator S<sub>uu</sub>,
  - diquark Bethe-Salpeter amplitude  $\Gamma_{uu}$ ,
  - nucleon Bethe-Salpeter amplitude  $\Gamma_{d;uu}$ .

# Quark-Diquark DA



- Need of specific ingredients:
  - quark propagator  $S_u$  ( $S_d$ ),
  - AV diquark propagator S<sub>uu</sub>
  - diquark Bethe-Salpeter amplitude  $\Gamma_{uu}$ ,
  - nucleon Bethe-Salpeter amplitude  $\Gamma_{d;uu}$ .

All these objects can be computed non-pertubatively using DSEs-BSEs.

# Nakanishi representation: Quark-Diquark Amplitude



$$S_q(q) = rac{-i\gamma\cdot q + M}{q^2 + M^2}$$



• diquark propagator:

$$S_{qq}(K) = rac{1}{K^2 + \widetilde{M}^2} \left( \delta_{\mu
u} + rac{K^\mu K^
u}{K^2} 
ight)$$

 Nakanishi representation for the quark-diquark Bethe-Salpeter Amplitude:

$$\mathcal{A}_{\mu}(K,P) = i\gamma_{5}P_{\mu}\frac{\bar{M}}{f_{N}}\bar{M}^{2\sigma}\int_{-1}^{+1} \mathrm{d}z\,\rho_{\sigma}(z)\left[\frac{1}{\left(\left(K-\frac{1-z}{2}P\right)^{2}+\Lambda_{N}^{2}\right)}\right]^{\sigma}$$

April 21<sup>th</sup>, 2016 13 / 24

# Nakanishi representation: Diquark Amplitude



• Quark propagator:

$$S_q(q) = rac{-i\gamma \cdot q + M}{q^2 + M^2}$$

# Nakanishi representation: Diquark Amplitude



• Quark propagator:

$$S_q(q) = rac{-i\gamma\cdot q + M}{q^2 + M^2}$$

• Point-like Bethe-Salpeter Amplitude:

$$\Gamma_{\mu} = i \widetilde{\gamma}_{\mu} C \frac{M}{f} M^{2\nu}, \qquad \widetilde{\gamma}_{\mu} = \gamma_{\mu} - \frac{K_{\mu}}{K^2} \gamma \cdot K$$

# Nakanishi representation: Diquark Amplitude



• Quark propagator:

$$S_q(q) = rac{-i\gamma\cdot q + M}{q^2 + M^2}$$

• Point-like Bethe-Salpeter Amplitude:

$$\Gamma_{\mu} = i \widetilde{\gamma}_{\mu} C \frac{M}{f} M^{2\nu}, \qquad \widetilde{\gamma}_{\mu} = \gamma_{\mu} - \frac{K_{\mu}}{K^2} \gamma \cdot K$$

• Extended Bethe-Salpeter Amplitude:

$$\Gamma_{\mu}(q, K) = i \tilde{\gamma}_{\mu} C \frac{M}{f} M^{2\nu} \int_{-1}^{+1} \mathrm{d}z \, \rho_{\nu}(z) \left[ \frac{1}{\left( \left( q - \frac{1-z}{2} K \right)^2 + \Lambda_q^2 \right)} \right]^{\nu}$$

C. Mezrag (Argonne National Laboratory

April 21<sup>th</sup>, 2016

# A point-like diquark?

• The DA resulting from a point-like BS ampltitude presents two main features:

- a "flat" contribution,
- an "asymptotic-like".

3) ( 3) ( 3)

# A point-like diquark?

• The DA resulting from a point-like BS ampltitude presents two main features:

- a "flat" contribution,
- an "asymptotic-like".



# A point-like diquark?

• The DA resulting from a point-like BS ampltitude presents two main features:

- a "flat" contribution,
- an "asymptotic-like".



April 21<sup>th</sup>, 2016

15 / 24

• We expect this to affect the Nucleon DA in our quark-diquark approach.

• Computation of the Mellin moment of the nucleon DA:

$$\widetilde{\varphi}(n_1, n_2, n_3) = \int \mathcal{D}x_i \ x_1^{n_1} x_2^{n_2} x_3^{n_3} \varphi(x_1, x_2, x_3)$$

★ E ► ★ E ► = E

April 21<sup>th</sup>, 2016 16 / 24

Image: A matrix

• Computation of the Mellin moment of the nucleon DA:

$$\widetilde{\varphi}(n_1, n_2, n_3) = \int \mathcal{D}x_i \ x_1^{n_1} x_2^{n_2} x_3^{n_3} \varphi(x_1, x_2, x_3)$$

 $\bullet$  3D Mellin Transform  $\rightarrow$  one can expect hard time to inverse it...

April 21<sup>th</sup>, 2016

16 / 24

Image: A matrix

• Computation of the Mellin moment of the nucleon DA:

$$\widetilde{\varphi}(n_1, n_2, n_3) = \int \mathcal{D}x_i \ x_1^{n_1} x_2^{n_2} x_3^{n_3} \varphi(x_1, x_2, x_3)$$

- 3D Mellin Transform  $\rightarrow$  one can expect hard time to inverse it...
- ... but momentum conservation  $(\delta(1 x_1 x_2 x_3))$  reduce the problem to a 2D transform.

• Computation of the Mellin moment of the nucleon DA:

$$\widetilde{\varphi}(n_1, n_2, n_3) = \int \mathcal{D}x_i \ x_1^{n_1} x_2^{n_2} x_3^{n_3} \varphi(x_1, x_2, x_3)$$

- 3D Mellin Transform  $\rightarrow$  one can expect hard time to inverse it...
- ... but momentum conservation  $(\delta(1 x_1 x_2 x_3))$  reduce the problem to a 2D transform.
- $\widetilde{\varphi}(1,0,0) + \widetilde{\varphi}(0,1,0) + \widetilde{\varphi}(0,0,1) = \widetilde{\varphi}(0,0,0).$

(이 프 ) 이 프 ) 프

• Computation of the Mellin moment of the nucleon DA:

$$\widetilde{\varphi}(n_1, n_2, n_3) = \int \mathcal{D}x_i \ x_1^{n_1} x_2^{n_2} x_3^{n_3} \varphi(x_1, x_2, x_3)$$

- 3D Mellin Transform  $\rightarrow$  one can expect hard time to inverse it...
- ... but momentum conservation  $(\delta(1 x_1 x_2 x_3))$  reduce the problem to a 2D transform.
- $\widetilde{\varphi}(1,0,0) + \widetilde{\varphi}(0,1,0) + \widetilde{\varphi}(0,0,1) = \widetilde{\varphi}(0,0,0).$

It is possible to analytically invert the Mellin Transform.

• Computation of the Mellin moment of the nucleon DA:

$$\widetilde{\varphi}(n_1, n_2, n_3) = \int \mathcal{D}x_i \ x_1^{n_1} x_2^{n_2} x_3^{n_3} \varphi(x_1, x_2, x_3)$$

- 3D Mellin Transform  $\rightarrow$  one can expect hard time to inverse it...
- ... but momentum conservation  $(\delta(1 x_1 x_2 x_3))$  reduce the problem to a 2D transform.
- $\widetilde{\varphi}(1,0,0) + \widetilde{\varphi}(0,1,0) + \widetilde{\varphi}(0,0,1) = \widetilde{\varphi}(0,0,0).$

It is possible to analytically invert the Mellin Transform.

## Analytical results for very simple Ansätze.

 $\varphi_{PL}(x_1, x_2, x_3)$ 

 $\varphi_{PL}(x_1, x_2, x_3) - \varphi_{AS}(x_1, x_2, x_3)$ 





Nucleon DA

April 21<sup>th</sup>, 2016



• It looks almost symmetric and therefore close to the asymptotic distribution. Very encouraging result.



- It looks almost symmetric and therefore close to the asymptotic distribution. Very encouraging result.
- Please notice:
  - A feature of the point-like diquark: non-zero values for  $x_1 = 0$  or  $x_2 = 0$ .



- It looks almost symmetric and therefore close to the asymptotic distribution. Very encouraging result.
- Please notice:
  - A feature of the point-like diquark: non-zero values for  $x_1 = 0$  or  $x_2 = 0$ .
  - Slight unexpected sign change near  $x_3 \simeq 1$ .

# From point-like to asymptotic diquark

• Change of the Bethe-Salpeter Amplitude:

$$\Gamma_{\mu}(q, \mathcal{K}) = i \tilde{\gamma}_{\mu} C \frac{M}{f} M^{2\nu} \int_{-1}^{+1} \mathrm{d}z \, \rho_{\nu}(z) \left[ \frac{1}{\left( \left( q - \frac{1-z}{2} \mathcal{K} \right)^2 + \Lambda_q^2 \right)} \right]^{\nu}$$

• For  $ho \propto (1-z^2)$  and u = 1, one recovers the asymptotic DA:

 $\phi(x) = 6x(1-x)$ 

Gao et al. (2014)

April 21<sup>th</sup>, 2016 18 / 24

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

• Doing so we lose sensitivity in  $\Lambda_q^2$ .

# From point-like to asymptotic diquark

• Change of the Bethe-Salpeter Amplitude:

$$\Gamma_{\mu}(q, \mathcal{K}) = i \tilde{\gamma}_{\mu} C \frac{M}{f} M^{2\nu} \int_{-1}^{+1} \mathrm{d}z \, \rho_{\nu}(z) \left[ \frac{1}{\left( \left( q - \frac{1-z}{2} \mathcal{K} \right)^2 + \Lambda_q^2 \right)} \right]^{\nu}$$

• For  $ho \propto (1-z^2)$  and u = 1, one recovers the asymptotic DA:

 $\phi(x) = 6x(1-x)$ 

Gao et al. (2014)

• Doing so we lose sensitivity in  $\Lambda_q^2$ .

 Good second step!

 C. Mezrag (Argonne National Laboratory)

 Nucleon DA

 April 21<sup>th</sup>, 2016

 18 / 24

# Result 2: Extended Asymptotic-like Diquark





- No more sign change and the DA vanishes on the edges.
- Deform toward the large  $x_3$ .

April 21<sup>th</sup>, 2016

# Modification of the $\rho$ function

$$\mathcal{A}_{\mu}(\mathcal{K}, \mathcal{P}) = i\gamma_{5}\mathcal{P}_{\mu}\frac{\bar{M}}{f_{N}}\bar{M}^{2\sigma}\int_{-1}^{+1} \mathrm{d}z\,\rho_{\sigma}(z)\left[\frac{1}{\left(\left(\mathcal{K}-\frac{1-z}{2}\mathcal{P}\right)^{2}+\Lambda_{N}^{2}\right)}\right]^{\sigma}$$

• All the previous plots,  $ho_{\sigma}(z) \propto (1-z^2)$ 

★ E ► ★ E ► E

April 21<sup>th</sup>, 2016

20 / 24

< □ > < 同 >

# Modification of the $\rho$ function

$$\mathcal{A}_{\mu}(\mathcal{K}, P) = i\gamma_5 P_{\mu} \frac{\bar{M}}{f_N} \bar{M}^{2\sigma} \int_{-1}^{+1} \mathrm{d}z \, \rho_{\sigma}(z) \left[ \frac{1}{\left( \left( \mathcal{K} - \frac{1-z}{2}P \right)^2 + \Lambda_N^2 \right)} \right]^{\sigma}$$

• All the previous plots,  $ho_{\sigma}(z) \propto (1-z^2)$ 



April 21<sup>th</sup>, 2016

э

# Modification of the $\rho$ function

$$\mathcal{A}_{\mu}(\mathcal{K}, \mathcal{P}) = i\gamma_{5}\mathcal{P}_{\mu}\frac{\bar{M}}{f_{N}}\bar{M}^{2\sigma}\int_{-1}^{+1} \mathrm{d}z\,\rho_{\sigma}(z)\left[\frac{1}{\left(\left(\mathcal{K}-\frac{1-z}{2}\mathcal{P}\right)^{2}+\Lambda_{N}^{2}\right)}\right]^{\sigma}$$

• All the previous plots,  $ho_{\sigma}(z) \propto (1-z^2)$ 



Modification of  $\rho$  to generate an asymmetric distribution of momentum

Nucleon DA

# Preliminary result



- More central than previously
- Still preliminary
- It starts becoming numerically challenging

C. Mezrag (Argonne National Laboratory)

Nucleon DA

April 21th, 2016

# Results summary

## Asymptotic



Point-like



Nucleon DA

## Extended diquark



## Asymmetric extended diquark



C. Mezrag (Argonne National Laboratory)

- At high enough  $Q^2$ , it is possible to compute the form factor through the DA.
- Results on the pion show that at available energy, the asymptotic DA is not relevant for such a computation.
- To compute the nucleon DA and see how it differs from the asymptotic one.
- We developed algebraic models as a first step.
- Results are encouraging.

< ≧ > < ≧ > ≧ April 21<sup>th</sup>, 2016

# Outlook

- Short term outlooks:
  - Finish the algebraic computations.
  - Numerical computation using solution of the DSEs.
  - Comparison with lattice data
  - Computation of the ratio of the proton and neutron magnetic form factors.
- Longer term outlooks  $\rightarrow$  computations of other structure functions:
  - Valence nucleon PDF.
  - Valence nucleon GPD,
    - $\rightarrow$  following the methods highlighted in arXiv:1602.07722 for the pion.
    - $\rightarrow$  using the PARTON Software developed at Saclay (1512.06174).

# **PARTONS** Project



PARtonic Tomography Of Nucleon Software

#### 

## Members and areas of expertise Network of developers, upstream contributors and users







## Computing chain design. Differential studies: physical models and numerical methods.



### PARTONS status

### Introduction

### Towards 3D Imaging

Experimental access

From observables to 3D images

#### PARTONS Project

#### Computing chain

Examples Architecture Team

### Prospects

In progress PARTONS\_Fits

### Conclusions

Experimental data and phenomenology

Computation of amplitudes

principles and

fundamental parameters

First

Full processes

Small distance contributions

Large distance contributions

H. Moutarde | CLAS Coll. Meeting 2016

< 同 > < 三 >



## Computing chain design. Differential studies: physical models and numerical methods.







PARTONS

# Computing chain design.

Differential studies: physical models and numerical methods.



status Experimental data and Introduction phenomenology Towards 3D Imaging Experimental access From observables to 3D images PARTONS

Project Computing chain

Examples Architecture Team

### Prospects

In progress PARTONS Fits

## Conclusions

of amplitudes First principles and

fundamental parameters



CLAS Coll. Meeting 2016 8 / 25

< 回 > < 三 > < 三 >



Differential studies: physical models and numerical methods.





H. Moutarde

CLAS Coll. Meeting 2016 | 8 / 25

< 回 > < 三 > < 三 >



Differential studies: physical models and numerical methods.



PARTONS status

Introduction

Towards 3D Imaging

Experimental access From observables to 3D images

#### PARTONS Project

Computing chain

Examples Architecture Team

## Prospects

In progress PARTONS\_Fits

## Conclusions

phenomenology Need for modularity Computation of amplitudes First principles and fundamental parameters

Experimental

data and



# Many observables.

Kinematic reach.

# Perturbative approximations.

Physical models.

Fits.

< A 1

- Numerical methods.
- Accuracy and speed.

H. Moutarde



Differential studies: physical models and numerical methods.



PARTONS status

Introduction

Towards 3D Imaging

Experimental access From observables to 3D images

#### PARTONS Project

Computing chain

Examples Architecture Team

## Prospects

In progress PARTONS\_Fits

## Conclusions

data and phenomenology Need for modularity Computation of amplitudes First principles and

Experimental

fundamental parameters



 Many observables.

Kinematic reach.

Perturbative approximations.

Physical models.

Fits.

< A 1

- Numerical methods.
- Accuracy and speed.

H. Moutarde



Differential studies: physical models and numerical methods.



PARTONS status

Introduction

Towards 3D Imaging

Experimental access From observables to 3D images

### PARTONS Project

Computing chain

Examples Architecture Team

## Prospects

In progress PARTONS\_Fits

## Conclusions

Experimental data and phenomenology Need for modularity Computation

of amplitudes





# Many observables.

- Kinematic reach.
- Perturbative approximations.
- Physical models.

Fits.

< A 1

- Numerical methods.
- Accuracy and speed.

H. Moutarde



Differential studies: physical models and numerical methods.



PARTONS status

Introduction

Towards 3D Imaging

Experimental access From observables to 3D images

### PARTONS Project

Computing chain

Examples Architecture Team

## Prospects

In progress PARTONS\_Fits

## Conclusions

data and phenomenology Need for modularity Computation of amplitudes First principles and fundamental

parameters

Experimental



# Many observables.

- Kinematic reach.
- Perturbative approximations.
- Physical models.

Fits.

< A 1

- Numerical methods.
- Accuracy and speed.

H. Moutarde



Differential studies: physical models and numerical methods.





## Introduction

### Towards 3D Imaging

Experimental access From observables to 3D images

### PARTONS Project

#### Computing chain

Examples Architecture Team

## Prospects

In progress PARTONS Fits

## Conclusions

Experimental data and phenomenology Need for modularity Computation of amplitudes First

fundamental

parameters



# Many observables. Kinematic reach.

- Perturbative approximations.
- Physical models.

Fits.

< A 1

- Numerical methods.
- Accuracy and speed.

H. Moutarde

# Thank you for your attention!

< □ > < 同 >

< ≧ > < ≧ > ≧ April 21<sup>th</sup>, 2016