

Probing transverse nucleon structure at high momentum transfer April 18-22, 2016 ECT* Trento

Feasibility studies on time-like proton electromagnetic form factors at PANDA-FAIR

Iris Zimmermann, Alaa Dbeyssi, Dmitry Khaneft on behalf of the PANDA Collaboration

Helmholtz Institute Mainz Johannes-Gutenberg University Mainz

The PANDA-Experiment at the high energy storage ring (HESR) @ FAIR (Darmstadt/Germany)

Electromagnetic Form Factors of the Proton

- Internal structure and dynamics of the proton
- Hadronic vertex can be parametrized in terms of two Form Factors F₁ & F₂.

$$\Gamma^{\mu} = F_1(q^2) \gamma^{\mu} + \frac{i\kappa}{2m_p} F_2(q^2) \sigma^{\mu\nu} q_{\nu}$$

> Sachs Form Factors $G_E \& G_M$:

$$G_{E}(q^{2}) = F_{1}(q^{2}) + \frac{q^{2}}{4m_{p}^{2}}F_{2}(q^{2}), \quad G_{E}(0) = 1$$
$$G_{M}(q^{2}) = F_{1}(q^{2}) + F_{2}(q^{2}), \quad G_{M}(0) = \mu_{p}$$

> In the Breit frame q=(0,q) and in non relativistic approach, G_E and G_M are the Fourier transforms of the **charge and magnetic spatial distributions** of the nucleon

Electromagnetic Form Factors of the Proton

- Internal structure and dynamics of the proton
- Hadronic vertex can be parametrized in terms of two Form Factors F₁ & F₂.

$$\Gamma^{\mu} = F_1(q^2) \gamma^{\mu} + \frac{i\kappa}{2m_p} F_2(q^2) \sigma^{\mu\nu} q_{\nu}$$

> Sachs Form Factors $G_E \& G_M$:

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2}F_2(q^2), \quad G_E(0) = 1$$
$$G_M(q^2) = F_1(q^2) + F_2(q^2), \quad G_M(0) = \mu_p$$

In the Breit frame q=(0,q) and in non relativistic approach, G_E and G_M are the Fourier transforms of the charge and magnetic spatial distributions of the nucleon

Electromagnetic Form Factors of the Proton > Internal structure and dynamics of the proton Connection between Time-like & Space-Like Form Factors: > Hadronic vertex can be parametrized in terms of two Form Factors $F_1 \& F_2$ Dispersion relations $\Gamma^{\mu} = F_1(q^2) \bigcup_{m_p}^{j_k}$ tarity & Analyty thick of the charge and magnetic spatial distributions of the nucleon

Electromagnetic Form Factors of the Proton > Internal structure and dynamics of the Sachs Form Factors $G_E \& G_M$: proton Connection between Time-like & Space-Like **Form Factors:** $G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2}F_2(q^2), \quad G_E(0) = 1$ > Hadronic vertex can be parametrized in $G_M(q^2) = F_1(q^2) + F_2(q^2), \quad G_M(0) = \mu_p$ terms of two Form Factors F₁ & F₂ Dispersion relations based on frame q=(0,q) and in non $\Gamma^{\mu} = F_1(q^2) U_{\mu} + F_1(q^2) U_{\mu$ magnetic spatial distributions of the Unified frame for the description of form factors over whole kinematical region A Predicitions for regions without $G(q^2)_{SL} = \frac{1}{\pi} \left[\int_{4m_{\pi}^2}^{4m_{p}^2} \frac{\operatorname{Im} G(s)}{s - q^2} ds + \int_{4m_{p}^2}^{\infty} \frac{\operatorname{Im} G(s)}{s - q^2} ds \right]$ experimental data ▶ Phys. Rep. 555 (2015) 1 and references therein

Electromagnetic Form Factors of the Proton

Data on the time-like proton form factor ratio $R=|G_E|/|G_M|$

BaBar: Phys. Rev. D88 072009 LEAR: Nucl.Phys.J., B411:3-32. 1994 BESIII: arXiv:1504.02680. 2015 CMD-3: arXiv:1507.08013v2 (2015) @ BaBar (SLAC): $e^+e^- \rightarrow \overline{p}p\gamma$

data collection over wide energy range

@ PS 170 (LEAR): $\overline{p}p \rightarrow e^+e^-$

data collection at low energies

Data from BaBar & LEAR show inconsistencies

@ BESIII: $e^+e^- \rightarrow \overline{p}p$

- Measurement at different energies
- Uncertainties comparable to previous experiments

@ CMD-3 (VEPP2000 collider, BINP): $e^+e^- \rightarrow \overline{p}p$

- Energy $\sqrt{s} = 1.92 2.00 \ GeV$
- Uncertainty of R in agreement with BaBar data

Data on the time-like proton form factor ratio $R = |G_F| / |G_M|$

@ BaBar (SLAC): $e^+e^- \rightarrow \overline{p}p\gamma$

data collection over wide energy range

@ PS 170 (LEAR): $\overline{p}p \rightarrow e^+e^-$

data collection at low energies

Data from BaBar & LEAR show inconsistencies

@ BESIII: $e^+e^- \rightarrow \overline{p}p$

- Measurement at different energies
- Uncertainties comparable to previous experiments

BaBar: Phys. Rev. D88 LEAR: Nucl.Phys.J., B41 **BESIII**: arXiv:1504.026

Time-like electromagnetic proton form factors @ PANDA: The goals

Differential cross section¹ of signal reaction $pp \rightarrow l^+l^ l = \mu, e$ → Access to the time-like, electromagnetic form factors of the proton, $|G_E|$ and $|G_M|$:

$$\frac{d\sigma}{d\cos\theta_{CM}} \propto \frac{\beta_{l^-}}{\beta_{\overline{p}}} \left(\frac{|G_M|^2}{s} \right) \left[(1 + \frac{4m_{l^-}^2}{s} + \beta_{l^-}^2 \cos^2\theta_{CM}) + \frac{R^2}{\tau} (1 - \beta_{l^-}^2 \cos^2\theta_{CM}) \right]$$

- > High luminosity: Measurement of signal angular distribution
 - Separate determination of $|G_E|$, $|G_M|$ over a large kinematical region in the time-like region
 - ▶ High precision measurement of the ratio $R = |G_E| / |G_M|$ at PANDA as well as the proton effective form factor $|F_p|^2 \propto \sigma_{tot}$

1) A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

 $R = \frac{|G_E|}{|G_{U}|}$

Time-like electromagnetic proton form factors @ PANDA: The goals

- First time measurement with muons in final state
- Form factor measurements with different final states:
 - Study of radiative corrections
 - Consistency check of proton form factor data
- > Possibility to access the **relative phase** of proton time-like form factors:
 - → $\overline{p}p \rightarrow l^+ l^-$ in the Born approximation:
 - > Unpolarized cross section -> access to $|G_E| \& |G_M|$
 - > Polarization observables -> access to relative phase $G_E G_M^*$:

Single spin polarization observable $\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_0 A_{1,y} \propto \sin 2\Theta \operatorname{Im}\left(G_M G_E^*\right)$

A. Z. Dubnickova, S. Dubnicka & M.P. Rekalo Nuovo Cim. A109 (1996) 241-256

> Development of a **transverse polarized target for PANDA** in **Mainz**

Time-like electromagnetic proton form factors @ PANDA: The goals

Access the **unphysical region**: $\overline{p}p \rightarrow \pi^0 e^+ e^ \succ$

- M. P. Rekalo, Sov. J. Nucl. Phys. 1 (1965) 760
- Measurement of time-like proton form factors up to $s \approx 30 \text{ GeV}^2$ @ PANDA
 - Study the asymptotic behaviour of the form factors
- Strong hadronic background, mainly ≻

$$\frac{\sigma(\overline{p}p \to \pi^+\pi^-)}{\sigma(\overline{p}p \to l^+l^-)} \propto \left[10^5 - 10^6\right]$$

Good background rejection necessary

$$\overline{p}p \rightarrow \pi^+\pi^-$$

Feasibility studies needed for both signal channels!

Feasibility studies: time-like proton form factors @ PANDA Background studies

New event generator developedby Mainz working group (M. Zambrana et al.)

> A. Dbeyssi, D. Khaneft, et al: Paper submitted to EPJA (2016)

- Background rejection ~10⁻⁸ needed: Pollution < 1%</p>
- For e⁺e⁻: A background rejection of the order of 10⁻⁸ will be achieved @ PANDA
- For μ⁺μ⁻: background rejection of the order of ~10⁻⁶ will be achieved @ PANDA

Feasibility studies: time-like proton form factors @ PANDA A) Simulation & Analysis : Event selection

Two different methods have been tested

- 1) <u>Preselection:</u>
- Method I: Each event must contain exactly one positive and one negative track.
- Method II: Each event must contain at least one positive and one negative track.
 - ➤ "Best pair" selected
- <u>2) Signal/Background separation based on:</u>
 ➢ Kinematical variables:
 - ➢ Production angles (θ⁺ + θ[−])_{CM}
 - $\blacktriangleright Invariant mass \qquad M$

$$I_{inv} = \sqrt{(p^{+} + p^{-})^{2}}$$

- ▶ Difference azimuthal angles $|\varphi^+ \varphi^-|$
- Particle Identification (PID): different subdetector information like Electromagnetic Calorimeter, Straw Tube Tracker etc. contribute

Feasibility studies: time-like proton form factors @ PANDA B) Simulation & Analysis : Event selection

p _{beam} [GeV/c]	1.5	1.7	3.3
s [GeV] ²	5.0	5.4	8.2

1) <u>Preselection</u>

- Each event must contain at least one positive and one negative track.
 - ➤ "Best pair" selected
- Both tracks must show hits inside the Muon System

2) Signal/Background separation based on:

- Multivariate data classification + cuts
- Kinematical variables:

Invariant mass

Production angles

$$(\theta^{T} + \theta^{T})_{CM}$$
$$M_{inv} = \sqrt{(p_{+} + p_{-})^{2}}$$

Detector observables from Muon System, EMC and STT

A) Feasibility studies: time-like proton form factors @ PANDA for

$$\overline{p}p \rightarrow e^+e^-$$

Two independent methods: Method I & Method II

- Study of precision for |G_E|&|G_M|, the form factor ratio R & effective form factor
- Study of the systematic effects : Effects of the event generator model on the efficiency determination, effect of fluctuations and fit function

A. Dbeyssi, D. Khaneft, F. Maas, D. Marchand, M. C. M. Espi, E. Tomasi-Gustafsson, M. Zambrana, I. Zimmermann et al.

A) Feasibility studies: time-like proton form factors @ PANDA for

 $\overline{p}p \rightarrow e^+ e^-$

Method I

Method II

Signal:

- Zichichi cross section¹ + PHOTOS
- ► Assuming $|G_E / G_M| = 1$
- ➢ s [GeV²]: 5.4, 7.3, 8.2, 11.1, 12.9, 13.9

Common features:

Signal:

- Flat angular distribution (phase space) + PHOTOS
- Scaled to the expected statistics
- ➢ s [GeV²]: 5.4, 8.2, 13.9
- Additional samples for signal efficiency determination

~10⁶ events at each energy point

Background:

New event generator @ s = 5.4, 8.2, and 13.9 [GeV²]

10⁸ events at each energy point

1) A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Nuovo Cim. 24, (1962) 170

A) Feasibility studies: time-like proton form factors @ PANDA for

$$\overline{p}p \rightarrow e^+e^-$$

Method I

$$\overline{p}p \rightarrow e^+e^-$$

Method II

$$\overline{p}p \rightarrow e^+e^-$$

Method II

- Independent sample for signal (phasespace) has been generated and reconstructed
- Normalization to the integrated counting rate N_{phys}(e⁺e⁻)
- Weighting by the differential cross section

Angular distribution of events

$$\overline{p}p \rightarrow e^+e^-$$

Method II

Angular distribution of events

B) Feasibility studies: time-like proton form factors @ PANDA for

$$\overline{p}p \rightarrow \mu^+ \mu^-$$

Study of the statistical error on R, $|G_E| \& |G_M|$

Feasibility studies: time-like proton form factors @ PANDA The Muon Range System of PANDA

Barrel : 13 detection layers

- **Overlap region Barrel & Endcap** : Hybrid tracking
- **Muon Filter + Endcap**: in total 11 detection layers

(Not shown: Forward Range System: 16 detection layers)

signal-background separation?

Analysis: *"Hard cuts" best method for*

Feasibility studies: time-like proton form factors @ PANDA Multivariate Data Classification (MVA)

1) <u>Training of the classifiers:</u>

- well-known training data samples (signal & background)
- 18 input variables for training, testing and evaluation:
 - Kinematical variables:
 - invariant mass, $(\theta^+ + \theta^-)_{CM}$
 - Detector observables from Muon System, EMC, Straw Tube Tracker
- Boosted Decision Tree (BDTG) shows best performance
- 2) <u>Application</u> of trained classifier on reconstructed data samples:
 - Cuts on BDTG response & kinematical variables:

Optimization of the Signal/Background separation

After Training: Response of the Boosted Decision Tree

TMVA response for classifier: BDTG

BDTG: Boosted Decision Trees based on gradient boosting technique

Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis : Cut Configuration Signal efficiencies (MVA)

@ p_{beam} = 1.7 GeV/c

	MVA (Boosted Decision Trees)						
	M _{inv} (l+l-) [GeV ²]	(θ++θ-) _{CM} [DEG]	BDTG	-	Signal efficiency ε	ε _B [10 ⁻⁵]	S-B ratio
"Loose" "Tight"]2.2 ; 2.5[]2.2 ; 2.5[> 179.95 > 179.95	> 0.9976 > 0.9990		0.212 0.116	0.79 0.26	1:7 1:4

Analysis based on **HARD CUTS** : S-B ratios between **1:38** and **1:30** at the same signal efficiencies.

Application of MVA trained methods clearly improves expected S-B ratio

Iris Zimmermann, Helmholtz-Institut Mainz

Feasibility studies: time-like proton form factors @ PANDA $\overline{p}p \rightarrow \mu^+\mu^-$ Statistical errors on $|G_E| \& |G_M|$

B) Extraction of $|G_E| \& |G_M|$ from cross section distribution

>
$$L = 2 \text{ fb}^{-1}$$
, $\Delta L/L = 3\%$

p_{beam} = 1.7 GeV/c, MVA & "Loose cuts"

Efficiency corrected cross section distribution of the signal after full analysis

$$\sigma_{i} = \frac{N_{i}}{W_{i}L} \quad \Delta\sigma_{i} = \frac{1}{W_{i}L} \cdot \sqrt{\left(\Delta N_{i}\right)^{2} + \left(\frac{N_{i} \cdot \Delta L}{L}\right)^{2}}$$

 σ_i : cross section in i-th bin N_i: number of entries i-th bin W_i: width of i-th bin

 \succ Extraction of $|\mathbf{G}_{\mathbf{E}}| \& |\mathbf{G}_{\mathbf{M}}|$

FIT FUNCTION

Fit parameters: $P_{0,1} = \sqrt{|G_{M,E}|^2}$

$$f(x) = C_1 \left[\frac{1}{\tau} (1 - \beta^2 x^2) \cdot P_1^2 + \left(1 + \frac{4m_{\mu}^2}{s} + \beta^2 x^2 \right) P_0^2 \right]$$

RESULTS PRELIMINARY

 $|G_{M}|=0.121\pm0.005$ $|G_{E}|=0.124\pm0.011$

$$\Delta |\mathbf{G}_{\mathbf{M}}| / |\mathbf{G}_{\mathbf{M}}| = 4.1\%$$

$$\Delta |\mathbf{G}_{\mathbf{E}}| / |\mathbf{G}_{\mathbf{E}}| = 8.6\%$$

$$\overline{p}p \rightarrow \mu^+ \mu^-$$

Feasibility studies: time-like proton form factors @ PANDA Conclusion

A) Feasibility studies for the signal reaction $p \to e^+ e^-$

Monte Carlo simulation & analysis for signal and main background channel

$$\overline{p}p \to e^+ e^- \qquad \overline{p}p \to \pi^+ \pi^-$$

Two independent feasibility studies were performed:

- High signal efficiency of 39-54%
- Background rejection factor of ~ 10⁸
- Extraction of R is possible for 5.4 < s < 12.9 [GeV²] with
 - > precision in the range of **1.5–56.0%**
- > With precise luminosity measurements extraction of will be possible for

 $|G_E| \& |G_M|$ in the range of 5.4 < s < 12.9 [GeV²] with

- > precision for $|G_E|$ in the range of 3.3–45.4%
- > precision for $|G_M|$ in the range of 1.7–9.0%
- The effective form factor: precision from 0.3% up to 62.4% (at s ~28 GeV²)

Feasibility studies: time-like proton form factors @ PANDA Conclusion

B) Feasibility studies for the signal reaction $p p \rightarrow \mu^+ \mu^-$

$$\overline{p}p \to \mu^+ \mu^- \qquad \overline{p}p \to \pi^+ \pi^-$$

- > @ p = 1.7 GeV/c a precision on
 - ➤ R of 5.1%,

 \geq

 \rightarrow |**G**_M| of **4.1%** & |**G**_E| of **8.6%** could be achieved

- Further studies for the muonic channel for beam momenta
- of 1.5 and 3.3 GeV/c are in progress
- Effect of different fit functions, background fluctuations and different luminosities on the precision of R, |G_M|&|G_E| is under investigation

The time-like electromagnetic proton form factors and their ratio $R = |G_E|/|G_M|$ can be measured @ PANDA with unprecedented statistical accuracy

Backup slides

Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis: Background studies

$$\overline{p}p \rightarrow \pi^+\pi^-$$

- > New event generator developed by Mainz working group (M. Zambrana et al.)
- Based on two different parametrizations

Low energy	Transistion region	High energy		
0.79 Data: Eisenhandler et. al., NP B96 (1975)	2.43 5	.00 12.00 p _{beam} (GeV/c) A. Eide et. al., NP B60(1973) T. Buran et. al., NPB 116(1976) C. White et. al., PRD 49(1994)		
Legendre Model: polynomial fit	Linear interpolation	Regge Theory J. Van de Wiele and S. Ong, EPJA 46 (2010)		

Feasibility studies: time-like proton form factors @ PANDA Background

Background including three-body final states: kinematically very different from signal

Background of two heavy charged particles (K⁺K⁻, etc.) in the final state:

- Cross section is high, but...
- Detector response (Straw Tube Tracker, Cherenkov detector, ...) very different from signal

The most challenging background is $\overline{p}p \rightarrow \pi^+\pi^-$ due to:

- Kinematically very similar to signal
- > **Detector response very similar** to signal
- Cross section is by a factor of 10⁶ higher than signal cross section

Feasibility studies: time-like proton form factors @ PANDA Simulation & Analysis : Cut Configuration

HARD CUTS vs. MVA

@ p_{beam} = 1.7 GeV/c

	HARD CUTS						
	M _{inv} (l+l-) [GeV ²]	(θ++θ-) _{CM} [DEG]	$P(\mu)_{MS}$	Iron thickness [cm]	Signal efficiency ε	ε _B [10 ⁻⁵]	S-B ratio
"Loose" "Tight"]2.3 ; 2.38[]2.3 ; 2.38[> 179.9505 > 179.9608	> 0.99 > 0.99	30.00 42.00	0.212 0.116	4.06 1.79	1:38 1:30
	MVA (Boosted Decision Trees)						
	M _{inv} (l+l-) [GeV ²]	(θ++θ-) _{CM} [DEG]	BDTG	-	Signal efficiency ε	ε _B [10 ⁻⁵]	S-B ratio
"Loose" "Tight"]2.2 ; 2.5[]2.2 ; 2.5[> 179.95 > 179.95	> 0.9976 > 0.9990		0.212 0.116	0.79 0.26	1:7 1:4

Application of MVA trained methods clearly **improves expected S-B ratio**

Feasibility studies: time-like proton form factors @ PANDA Multivariate Data Classification (MVA)

1) <u>Training of the classifiers:</u>

- well-known training data samples (signal & background)
- 19 input variables for training, testing and evaluation:
 - ► Kinematical variables (invariant mass, $(\theta^+ + \theta^-)_{CM}$, $|\varphi^+ \varphi^-|$)
 - Detector observables from Muon System, EMC, Straw Tube Tracker
- Boosted Decision Trees show best performance
- 2) <u>Application</u> of trained Boosted Decision Trees on reconstructed data samples:
 - Cuts on BDTG response & kinematical variables:

Optimization of the Signal/Background separation

Receiver Operating Characteristic (ROC)

BDT(*G*): Boosted Decision Trees using gradient (adaptive) boosting technique *CFMlpANN*: Neural network *Fisher*: linear discriminant analysis

Feasibility studies: time-like proton form factors @ PANDA Signal efficiency studies

Iris Zimmermann, Helmholtz-Institut Mainz

Feasibility studies: time-like proton form factors @ PANDA Signal efficiency studies

1) Zambrana, M.: Technical report 2011

Method II - Results

s [GeV²]

5.4

8.2

13.9

s [GeV²]	Input R	ΔR
5.4	1	0.014 [1.4%]
8.2	1	0.05 [5.0%]
13.9	1	0.407 [40.7%]

Input |G_{E.M}|

0.1215

0.0435

0.0110

Results: Hard cuts vs. MVA @ 1.7 GeV/c

	p _{beam} = 1.7 GeV/c	HARD CUTS		
	$L = 2 fb^{-1}$	R±∆R [%]	$ \mathbf{G}_{\mathbf{E}} \pm \Delta \mathbf{G}_{\mathbf{E}} $ [%]	$ \mathbf{G}_{\mathbf{M}} \pm \Delta \mathbf{G}_{\mathbf{M}} $ [%]
S/B: 1:38	"Loose"	0.968 ± 0.116	0.119 ± 0.016	0.123 ± 0.007
S/B: 1:30	"Tight"	(12.0) 0.994 ± 0.373 (37.6)	(13.3) 0.122 ± 0.041 (33.5)	0.123 ± 0.024 (19.2)
	p_{beam} = 1.7 GeV/c	MVA		
	$L = 2 \text{ fb}^{-1}$	R±∆R [%]	$ \mathbf{G}_{\mathbf{E}} \pm \Delta \mathbf{G}_{\mathbf{E}} $ [%]	$ G_M \pm \Delta G_M $ [%]
S/B: 1:7	"Loose"	1.027 ± 0.053	0.124 ± 0.011	0.121 ± 0.005
S/B: 1:4	"Tight"	(5.1) 1.062 ± 0.058 (5.5)	0.128 ± 0.011 (8.6)	(4.1) 0.120 ± 0.005 (4.3)