Frascati, May 20, 2016

Nucleon Form Factors Recent findings

Egle Tomasi-Gustafsson IRFU, SPhN-Saclay,

- Accessing the hadron creation?
- Periodic structures in TL region
- Deviation from dipole in SL region?

In collaboration with :
S. Pacetti and R. Baldini-Ferroli, Phys. Rep. 514 (2014) 1 A. Bianconi Phys Rev.Lett 114,232301 (2015)

Two questions

Periodic structures recently discovered in TL region

- Hadron creation from vacuum?
- ISR?
- Resonances

Discrepancy between polarized and unpolarized measurements of elastic EMFFs:

- Is it real?
- Two photon echange?!

Electromagnetic Interaction

The electron vertex is known, γ_{μ}

The interaction is carried by a virtual photon of mass q^{2}

The proton vertex is parametrized in terms of FFs: Pauli and Dirac F_{1}, F_{2}

$$
\Gamma_{\mu}=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{v}}{2 M} F_{2}\left(q^{2}\right)
$$

or in terms of Sachs FFs:

$$
G E=F_{1}-\tau F_{2}, G M=F_{1}+F_{2}, \tau=-q^{2} / 4 M^{2}
$$

Hadron Electromagnetic Form factors

$\mathrm{e}^{-} \quad \mathrm{e}^{-} / \Gamma_{\left.\mu=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{v}}{2 M} F_{2}\left(q^{2}\right), ~()^{2}\right)}$

p p

Space-like
FFs are real

Proton Electromagnetic Form factors

The Time-Like reaion

The Time-like Region

Expected QCD scaling $\left(q^{2}\right)^{2}$

$\frac{\mathcal{A}}{\left(q^{2}\right)^{2}\left[\log ^{2}\left(q^{2} / \Lambda^{2}\right)+\pi^{2}\right]}$
$\frac{\mathcal{A}}{\left(1+q^{2} / m_{a}^{2}\right)\left[1-q^{2} / 0.71\right]^{2}}$,

Oscillations : regular pattern in $P_{\text {Lab }}$

The relevant variable is $p_{\text {Lab }}$ associated to the relative motion of the final hadrons.

$$
F_{o s c}(p) \equiv A \exp (-B p) \cos (C p+D)
$$

A: Small perturbation B: damping
$\mathrm{C}: \mathrm{r}<1 \mathrm{fm}$
$\mathrm{D}=0$: maximum at $\mathrm{p}=0$
Simple oscillatory behaviour Small number of coherent sources
A. Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015)

Oscillations : regular pattern in $P_{\text {Lab }}$

the relative

$$
\mathrm{p}(-B p) \cos (C p+D)
$$

m B : damping

$\mathrm{D}=0$: maximum at $\mathrm{p}=0$

pry behaviour
 f coherent sources

Fourier Transform

- Rescattering processes
- Large imaginary part
- Related to the time evolution of the charge density?
(E.A. Kuraev, E. T.-G., A. Dbeyssi, PLB712 (2012) 240)
- Consequences for the SL region?
- Data from BESIII confirm the structure
- Expected from PANDA

Double layer potentials

Double layer rescattering densities: combination of two hollow potentials: one absorbing and one generating (imaginary potentials).

A. Bianconi, E. T-G., Phys. Rev. C (2016)

1) Multiple step function

2) Soft multistep

3) Two-gaussian opposite sign potential

Optical model analysis

Optical model analysis:
two component imaginary potential:
absorbing outside, regenerating inside with steep change of sign.

From the pbar-p point of view, the coupling with the other channels transforms into an imaginary potential that

- destroys flux (absorption - negative potential)
- generates flux (creation - positive potential)

The excited vacuum created by e+e-annihilation decays in multi-quark states: pbar-p is one of them

- feeding at small r by decay of higher mass states in pbar p
- depletion at large r from pbar-p annihilation into mesons

The Space-Like reaion

The Rosenbluth separation

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{M o t t} \frac{1}{(1+\tau)}\left(G_{E}^{2}\left(Q^{2}\right)+\frac{\tau}{\varepsilon} G_{M}^{2}\left(Q^{2}\right)\right)
$$

$$
\varepsilon=\left(1+2(1+\tau) \tan ^{2}\left(\frac{\theta_{e}}{2}\right)\right)^{-1}, \tau=\frac{Q^{2}}{4 M^{2}}
$$

$$
\sigma_{R}=\varepsilon G_{E}^{2}+\tau G_{M}^{2}
$$

Linearity of the reduced cross section

$\rightarrow \tan ^{2} \theta_{e}$ dependence
\rightarrow Holds for 1γ exchange only
0.0046

PRL 94, 142301 (2005)

The polarization method (theory:1967)

POLARIZATION PHENOMENA IN ELECTRON SCATTERING BY PROTONS IN THE HIGH-ENERGY REGION
 Academician A. I. Akhiezer* and M. P. Rekalo

Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR Translated from Doklady Akademii Nauk SSSR, Vol. 180, No. 5, pp. 1081-1083, June, 1968
Original article submitted February 26,

$$
\mathrm{s}_{2} \frac{d \sigma}{d \Omega_{R}}=4 \mathrm{p}_{2} \frac{(\mathrm{~s} \cdot \mathrm{q})}{1+\tau} \Gamma\left(\theta, \varepsilon_{1}\right)\left[\tau G_{M}\left(G_{M}+G_{E}\right)\right.
$$

$$
\left.-\frac{1}{4 \varepsilon_{1}} G_{M}\left(G_{E}-\tau G_{M}\right)\right],
$$

The polarization induces a term in the cross section proportional to $G_{E} G_{M}$ Polarized beam and target or polarized beam and recoil proton polarization

Polarization Experiments

A.I. Akhiezer and M.P. Rekalo, 1967

Jlab-GEp collaboration

1) "standard" dipole function for the nucleon magnetic FFs GMp and GMn
2) linear deviation from the dipole function for the electric proton FF Gep
3) QCD scaling not reached
4) Zero crossing of Gep?
5) contradiction between polarized and unpolarized measurements

A.J.R. Puckett et al, PRL (2010), PRC (2012)

Issues

- Some models (IJL 73, Diquark, soliton..) predicted such behavior before the data appeared

BUT

- Simultaneous description of the four nucleon form factors...
- ...in the space-like and in the time-like regions
- Consequences for the light ions description
- When pQCD starts to apply?
- Source of the discrepancy

Reaction mechanism: 1γ - 2γ interference?

Radiative corrections?

Two photon exchange

- $1 \gamma-2 \gamma$ interference is of the order of $\alpha=e^{2} / 4 p=1 / 137$

- In the 70's it was shown [J. Gunion and L. Stodolsky, V. Franco, F.M. Lev V.N. Boitsov, L. Kondratyuk and V.B. Kopeliovich, R. Blankenbecker...] that, at large momentum transfer, the sharp decrease of the FFs, if the if the momentum is shared between the two photons, may compensate α
- The calculation of the box amplitude requires the description of intermediate nucleon excitation and of their FFs at any $Q^{2 . .}$.
- Different calculations give quantitatively different results.

(a)

(b)

Polarization ratio (ε-dependence)

- DATA: No evidence of ε-dependence at 1% level
- MODELS: large correction (opposite sign) at small ε

-SF method: ε-(almost)independent corrections
${ }^{\bullet}$ Theory: corrections to the Born approximation at Q2=2.5 GeV2
Y. Bystritskiy, E.A. Kuraev and E.T.-G, Phys.Rev.C75: 015207 (2007)
P. Blunden et al., Phys. Rev. C72:034612 (2005) (mainly GM)
A. Afanasev et al., Phys. Rev. D72:013008 (2005) (mainly GE)
N.Kivel and M.Vanderhaeghen, Phys. Rev. Lett.103:092004 (2009). (high Q2)

Angular Asymmetry

BABAR

${ }^{\mathrm{TM}}$ and © Nelvana, All Rights Reserved

$$
\mathcal{A}(c)=\frac{\frac{d \sigma}{d \Omega}(c)-\frac{d \sigma}{d \Omega}(-c)}{\frac{d \sigma}{d \Omega}(c)+\frac{d \sigma}{d \Omega}(-c)}
$$

$\mathrm{A}=0.01 \pm 0.02$

Radiative Corrections (ep)

$$
\sigma_{R}=\varepsilon G_{E}^{2}+\tau G_{M}^{2}
$$

E. T.-G., G. Gakh, PRC 72, 015209 (2005)

Scattered electron energy

$$
\begin{gathered}
E^{\prime} / E=y_{i} y_{0}=\frac{1}{\rho} \\
\rho=1+\frac{2 E}{m} \ln ^{2} \theta / 2 .
\end{gathered}
$$

final state emission

Initial state emission
$\Delta \frac{d \sigma}{d \Omega} \sim \frac{d \sigma_{0}}{d \lambda} \cdot \frac{\alpha}{\lambda} \ln \frac{E}{\Delta E} \ln \frac{2 E M}{m_{e}^{2}}$.
Not so small!
Shift to LOWER Q²

All orders of PT needed \rightarrow

beyond Mo \& Tsai approximation

Unpolarized cross section:ep elastic scattering

$$
\sigma_{r e d}=\tau G_{M_{p}}^{2}+\epsilon G_{E_{p}}^{2}
$$

Born + dipole FFs
(=unpolarized experiment+Mo\&Tsai) SF (with dipole FFs) SF $+2 \gamma$ exchange

Radiative Corrections (SF method)

PHYSICAL REVIEW C 93, 055201 (2016)

Reanalysis of Rosenbluth measurements of the proton form factors

A. V. Gramolin* and D. M. Nikolenko

Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
(Received 28 March 2016; published 10 May 2016)

Figure 3: Difference at $Q^{2}=5 \mathrm{GeV}^{2}$.

Other issues in data

- Correlations

- Normalizations
+ of different sets of data
+ in a series

Experimental correlation

Andivahis et al., PRD50, 5491 (1994)

Direct extraction of the Ratio

Andivahis et al., PRD50, 5491 (1994)

$$
\sigma_{\mathrm{red}}=G_{M}^{2}\left(R^{2} \epsilon+\tau\right)
$$

Nucleon FFs above 6 GeV

...which makes evident any disagreement with the dipole prediction

R. Taylor

$\left(G_{M} / \mu\right)^{2}$

SLAC-PUB-372
Sentember 1967

> SLAC EOPRMENT
> omelumaty mesicts

Conclusion - Discussion

- Large activity in Space and Time-like regions increase precision or extend q^{2} range
-Unified models in SL and TL

B E S IHEP

VEPP-3

Novosibirsk

F̈anda

BABAR

To explore:

- Neutron/proton EM structure: FFs contain essential information
- Effect of deviation of GE and GM from dipole
- If problems were not in observables... but in derivatives?

