Progress on PHOKHARA

Szymon Tracz

Institute of Physics, University of Silesia Katowice

May 19, 2016

Szymon Tracz

Progress on PHOKHARA

Outline

2 Radiative corrections to pion pair production

3 Conclusions

Production of charmonium resonances with J^{++}

- Electromagnetic production only through higher order electromagnetic process.
- Strongly suppressed by ordinary annihilation through one photon to J^{--}
- High luminosity colliders (eg. BESIII) are needed.
- Signal can be observed in reactions:

$$e^+e^-
ightarrow \chi_c
ightarrow hadrons$$

 $e^+e^-
ightarrow \chi_c
ightarrow \gamma J/\psi (
ightarrow \mu^+\mu^-)$

Cross section for the process $e^+e^- \rightarrow \chi_c \rightarrow \gamma J/\psi(\rightarrow \mu^+\mu^-)$

 \bullet Background (Fig.(c)) has to be taken into account

•
$$\sqrt{s} = M_{\chi_c}$$

- ω_{γ} has to be chosen in the proper kinematic region
- possible contribution from a diagram from Fig.(b) is negligible for our event selections:

$$9.58916 < Q^2 < 9.59262$$

Short distance approximation

1 12

•
$$A(\chi_c \to \gamma\gamma) \propto \phi'(0)$$

• Terms $\propto b$ in the A($\chi_c \rightarrow \gamma\gamma$) break gauge invariance

$$c_{\gamma} = \frac{4e^2a}{\sqrt{m}} \frac{1}{(M_{\chi}^2/2 + b^2/4 + bM_{\chi}/2)^2}$$

J. H. Kuhn, J. Kaplan and E. G. O. Safiani, Nucl. Phys. B 157 (1979) 125.

 χ_c production through radiative corrections

 $x = \frac{4m^2}{M_{\chi c_i}^2} \to 1$

$$\begin{array}{lll} g_{1_{\gamma\gamma}} & \to & \frac{16\sqrt{2}\alpha^2 a}{M_{\chi_{c_1}}^{5/2}} 2(\log{(-2z_i)} - i\pi) \\ g_{2_{\gamma\gamma}} & \to & \frac{64\alpha^2 a}{M_{\chi_{c_2}}^{5/2}} [(\log{(-2z_i)} - i\pi) + \frac{1}{3}(i\pi + \log{2} - 1)] \end{array}$$

$$z_i=\frac{b_i}{M_{\chi c_i}},$$

 $|\phi^{'}(0)|^{2}=0.1 GeV^{5}$

	Γ _{1ee}	Γ _{2ee}		
	b = 0.5 ~GeV			
Leading term	0.0226 eV	0.0243 eV		
exact result	0.0317 eV	0.0159 eV		
	b = -0.5 GeV			
Leading term	0.164 eV	0.0512 eV		
exact result	0.141 eV	0.0731 eV		

Binding energy corrections

$$\Gamma_{1ee} = \frac{1}{3} \frac{|g_1|^2}{4\pi} M_{\chi c_1}$$
$$\Gamma_{2ee} = \frac{1}{5} \frac{|g_2|^2}{8\pi} M_{\chi c_2}$$
$$g_i = g_{i_{\gamma\gamma}} + g_{i_{J/\psi\gamma}}$$

 $\chi_c - \gamma\gamma$ FF

$$c_{\gamma} = \frac{4e^2}{\sqrt{m}} \left(a + \frac{fa_J}{M_{J/\psi}^2}\right) \frac{1}{(M_{\chi}^2/2 + b^2/4 + bM_{\chi}/2)^2}$$

 $\chi_c - \gamma J/\psi$ FF

•
$$b = 2m - M_{\chi_c}$$

• $a = \sqrt{\frac{1}{4\pi}} 3Q^2 \phi'(0)$
• $f = \sqrt{\frac{3\Gamma_{J/\psi \to e^+e^-} M_{J/\psi}^3}{4\pi\alpha^2}}$
• a_J - free parameter

Electronic widths

	$\gamma\gamma + J/\psi\gamma$	$\gamma\gamma$	$J/\psi\gamma$	$QED+Z^0$
Γ _{1ee} [eV]	0.078	0.073	0.003	0.071
Γ _{2ee} [eV]	1.35	0.032	0.975	-

$$e^+e^- \rightarrow \chi_c \rightarrow \gamma J/\psi (\rightarrow \mu^+\mu^-)$$

H. Czyż, J. H. Kühn and S. Tracz (in preparation)

Szymon Tracz

$$e^+e^- \rightarrow \chi_c \rightarrow \gamma J/\psi (\rightarrow \mu^+\mu^-)$$

H. Czyż, J. H. Kühn and S. Tracz (in preparation)

Szymon Tracz

Corrections to the reaction $e^+e^- \rightarrow \pi^+\pi^-\gamma$ F. Campanario, H.Czyż, Sz. Tracz, D. Zhuridov, J. Gluza, T. Jeliński, T. Riemann

D. Nomura's talk

M. Ripka [BESIII Collaboration],

Acta Phys. Polon. B 46 (2015)

no.11, 2261.

Born amplitudes

Two photons emission

Virtual corrections

• Diagrams describing virtual corrections contribute through their interference with the Born amplitude.

sQED

- including form Factor
- 2 independent codes

sQED - we do not expect large contributions

F. Campanario, H. Czyż, J. Gluza, M. Gunia, T. Riemann, G. Rodrigo and V. Yundin, JHEP 1402 (2014) 114,[arXiv:1312.3610 [hep-ph]].

Szymon Tracz

Progress on PHOKHARA

FF -possible resonant enhancement for Q near to the mass of the ρ

Final remarks

- Direct resonant production of $\chi_{c_{1,2}}$ lead to measurable resonant enhancement in cross section.
- The prediction exhibits a sizeable model dependence.
- Resonant signal both in the hadronic cross section and in the $\gamma\mu^+\mu-$ channel could be seen at the BESIII
- We keep working on radiative corrections to pions pair production and expect the first results soon.