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Status of (g — 2),,, experiment vs SM

Hagiwara et al. 2012
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Status of (g — 2),,, experiment vs SM

a,[10-"]  Aa,[107"]

experiment 116592 089. 63.

QED O(a) 116140973.21 0.03

QED O(a?) 413217.63 0.01

QED O(a?) 30141.90 0.00

QED O(a#) 381.01 0.02

QED O(a®) 5.09 0.01

QED total 116584 718.95 0.04

electroweak, total 153.6 1.0

HVP (LO) [Hagiwara et al. 11] 6 949 43
HVP (NLO) [Hagiwara et al. 11] —98 1
HLbL [Jegerlehner-Nyffeler 09] 1 16 40
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14] 124 01
HLbL (N LO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] 3 2

theory 116591 855. 59.
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Hadronic light-by-light: irreducible uncertainty?
» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved
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Hadronic light-by-light: irreducible uncertainty?

» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved

W@w

» basic principles: unitarity and analyticity

» direct relation to experiment: total hadronic cross section
owi(ete” — ~v* — hadrons)

» dedicated eT e~ program (BaBar, Belle, BESIII, CMD3,
KLOEZ2, SND)

(but going much below 1% is hard — dealing with radiative corrections poses nontrivial problems)



Intro Status of (g — 2),, Approaches to HLbL

Hadronic light-by-light: irreducible uncertainty?

» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved

» Hadronic light-by-light (HLbL) is more problematic:

» 4-point fct. of em currents in QCD

» “it cannot be expressed in terms of
measurable quantities”

» up to now, only model calculations

» lattice QCD not yet competitive (but
making progress)
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Different evaluations of HLbL

Jegerlehner Nyffeler 2009

Table 13
Summary of the most recent results for the various contributions to ujf’“‘“ % 10", The last column is our estimate based on our new evaluation for the
pseudoscalars and some of the other results.

Contribution BPP HKS KN MV BP PdRV N/IN

70 n.0 85113 827+64 83+L12 114 £ 10 = 114+ 13 99+ 16
. K loops —19+13 —45+8.1 E = ~ —19+19 —19+13
m, K loops + other subleading in N, = - - 0=+10 - - -

Axial vectors 25+1.0 1717 - 22+£5 - 15+ 10 22%5
Scalars —6.8+2.0 - - - - 747 742
Quark loops 21+3 97 +111 = = - 23+ 2143
Total 83132 896154 80+ 40 136 £25 11040 105 = 26 116+ 39

» large uncertainties (and differences among calculations) in
individual contributions

» pseudoscalar pole contributions most important

» second most important: pion loop, i.e. two-pion cuts (K's are
subdominant)

» heavier single-particle poles decreasingly important
(unless one models them to resum the high-energy tail)
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Approaches to Hadronic light-by-light

» Model calculations

> ENJL Bijnens, Pallante, Prades (95-96)
> NJL and hidden gauge Hayakawa, Kinoshita, Sanda (95-96)
> nonlocal xQM Dorokhov, Broniowski (08)
> AdS/CFT Cappiello, Cata, D’Ambrosio (10)
> Dyson-Schwinger Goecke, Fischer, Williams (11)
> constituent xQM Greynat, de Rafael (12)
> resonances in the narrow-width limit Pauk, Vanderhaeghen (14)

» Impact of rigorously derived constraints

> high-energy constraints taken into account in several models above
addressed specifically by Knecht, Nyffeler (01)
> high-energy constraints related to the axial anomaly Melnikov, Vainshtein (04) and Nyffeler (09)
> sumrules for y*y — X Pascalutsa, Pauk, Vanderhaeghen (12)
see also: workshop MesonNet (13)

> low-energy constraints—pion polarizabilities Engel, Ramsey-Musolf (13)

» Lattice Blum et al. (05,12)
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Our approach to hadronic light-by-light

We address the calculation of the hadronic light-by-light tensor

» model independent = rely on dispersion relations
(or at least on a dispersive approach/language)

» as data-driven as possible

» takes into account high-energy constraints
[OPE, perturbative QCD]
(exact implementation not discussed here)
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Outline

The HLbL tensor: gauge invariance and crossing symmetry



HLbL: gauge & crossing

Some notation
HLbL tensor:

e = [ o [ay [dz oo ez 0T {jua) (v (0)}10)

where j*(x) = >; Qiqi(x)v"qi(x), i = u,d, s
B=K=q1+q@+q k=0

with Mandelstam variables

s=(+@)? t=(q1+q)? u=(q+q)?



HLbL: gauge & crossing

Some notation
HLbL tensor:

e = [ o [ay [dz oo ez 0T {jua) (v (0)}10)
where j#(x) = >2; Qigi(x)y*qi(x), i = u,d, s
U=k=q1+Gq+qs Kk>*=0
General Lorentz-invariant decomposition:

e — guug)\al—l1_'_gu)\gual—IZ_i_g;wgl/)\l—lS_i_Z qlftq;’qi‘qfrl;}kl—i—. ..
ij,k,!

consists of 138 scalar functions {N', M2, ...}, butin d = 4 only
136 are linearly independent Eichmann et al. (14)



HLbL: gauge & crossing

Some notation
HLbL tensor:

e = [ o [ay [dz oo ez 0T {jua) (v (0)}10)
where j#(x) = >2; Qigi(x)y*qi(x), i = u,d, s
U=k=q1+Gq+qs Kk>*=0
General Lorentz-invariant decomposition:

Mo — g,uug)\al—ﬂ_'_gu)\gual—IZ_i_guagV)\nS_i_Z q’/fq;’qi‘q;’ﬂ;kl—i—. ..
ij.k,l

consists of 138 scalar functions {N', M2, ...}, butin d = 4 only
136 are linearly independent Eichmann et al. (14)

Constraints due to gauge invariance? (see aiso Eichmann, Fischer, Heupel (2015))
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Detour: the subprocess v*v* —

Consider v*(q1, M1)7* (G2, A2) = 7@(p1)7°(p2):
Wi (Pr.Pas 1) = 1 [ d¥xe @ (x2(p1)nb(pa) T it () (0)}10)

General tensor decomposition (g;, i = 1,...,3, g3 = p2 — p1):

Wi = g Wi + 3 gl g W
I

gives ten independent scalar functions.
Gauge invariance requires:

G Wiy = W =0
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Gauge invariance: Bardeen-Tung-Tarrach approach

Consider the projector Bardeen, Tung (68)

po — g B9
gi- Q2

which satisfies
I}L)\ W)\V = W,u,)\/)\u = Wy, q-lﬁl;w = qE/W =0

and contract it twice with W,,,,, leaving it invariant:

5
_ v
Wl“/ - /NN/ /V/V wH - Z Z /11/
i=1

The A; are free of kinematic_ singularities, but have zeros. To_
remove the zeros from the A; = remove the poles from the T
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Gauge invariance: Bardeen-Tung-Tarrach approach

T = a1 - q0" — a4 97,

T = GaBg" + a - Gl G5 — Grdh a5 — dBal Y,

T3 =i G2 Gs9"" + G1 - G20}/ 05 — G795 G5 — G2 - 091 Y

T, = Gq g™ + G G205G5 — G545 GY — G1 - 4G5 G5,

T3" = G1- 0302 - 30" + 1 - Q20505 — G1 - G305 05 — G2 - 0395 97 ,

This is a basis of gauge-invariant tensors, but for q; - g0 = 0 it
becomes degenerate: need one more structure: Tarrach (75)
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Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to M***? one ends
up with: GC, Hoferichter, Procura, Stoffer (2015)

» 43 basis tensors (BT)
» 11 additional ones (T)
» of these 54 only 7 are completely independent

54
HHVAU — Z 7-I}LV)\UI—II
i=1



HLbL: gauge & crossing

Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to M***? one ends
up with: GC, Hoferichter, Procura, Stoffer (2015)

7PN A s
7—1“1/ 7 = B ey 1092393~

T = (abal — a1 g™ ) (0305 — a5 - 2g™7 ),
T = (g — a1 09" ) (o1 - (0705 — a1 - 98977 ) + @20 aT a1 - a5 — 477 G - 0a)
T = (ol —ar- 20" ) (@ a (005 — a1 w07 ) + a5 ar - a5 — a1 a5 %5 - @),
T = (gfay —ar - 00" ) (a2 a1 -G — a7 a2 - as) (a5 a1 - q — a7 a2 - ),
T4 = (afar - as —afar - as) (59208 — Ay B oS + 9™ (a5 - o5 — a5 a2 - 0u)
+9" (B0~ G- a)+9" (k- a) ),

i = a5 (a1 %% - aadf' a™ — @ - o - i 9™ + df o (a7 95 — a2 a1 - Gs)

+ a1 %04 B — % B + - e (59N —ah g )

—a (q1 G4G2 - 305977 — d - quar - 939597 + gy (a7 - qu — 93 Gt - Qa)
+ar - G50f' 95 a5 — G2 - a0 o A + a1 - dae - a5 (959" — 0 9"7))

+as-qu( (aay — a1 we™) (@65 — - 260”7) — (B 6 — - ag™) (e —ar-wg"7)).



HLbL: gauge & crossing

Back to hadronic light-by-light
Applying the Bardeen-Tung-Tarrach method to M***? one ends
up with: GC, Hoferichter, Procura, Stoffer (2015)
43 basis tensors (BT)
11 additional ones (T)
of these 54 only 7 are completely independent

all remaining 47 can be obtained by crossing
transformations of these 7

v

v

v

v

54
n,Ll,V)\U — Z -,-i,tw)\ol—li
i=1



HLbL: gauge & crossing

Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to M***? one ends
up with: GC, Hoferichter, Procura, Stoffer (2015)

>

>

>

>

43 basis tensors (BT)
11 additional ones (T)
of these 54 only 7 are completely independent

all remaining 47 can be obtained by crossing
transformations of these 7

the dynamical calculation needed to fully determine the
LbL tensor concerns these 7 scalar amplitudes

54
HHVAU — Z 7-I}Ll/)\0'|—|l
i=1



HLbL: gauge & crossing

Back to hadronic light-by-light
Applying the Bardeen-Tung-Tarrach method to M***? one ends
up with: GC, Hoferichter, Procura, Stoffer (2015)
» 43 basis tensors (BT)
» 11 additional ones (T)
» of these 54 only 7 are completely independent

» all remaining 47 can be obtained by crossing
transformations of these 7

» the dynamical calculation needed to fully determine the
LbL tensor concerns these 7 scalar amplitudes

54
n;w)\cr — Z -,-i,uu)\ol—li
i=1

The 54 scalar functions I1; are free of kinematic singularities
and zeros and as such are amenable to a dispersive treatment
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HLbL dispersive Master Formula Dispersive calc. 7-box -resc.
HLbL contribution to a,
From gauge invariance:

0
Muvao (1, Qe K — Q1 — Q2) = —kpawﬂ,mp(quqb k—aq1—q).

Contribution to a,: m:=m,

8. = 2g1= T (p-+ M7, 271 (p + m) T (o)}
d*q. 1 7 (g +m)y (p—ge+m)y”

d4Q1
__ A6
=¥ [y RR(a + %) (P02 —m?) ((p- )2 —m?) "

0
X %nwm(%’%’k - a1 — Q2)

k=0

The BTT method allows us to take the limit k, — 0 explicitly at
this point (no kinematic singularities!)
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Master Formula

S g6 / d*qr d*ge 2 TG, g p)H(Gr. Qo —Gi — Q)
" (2m)* (2m)* q2a2 (a1 + q)2l(P + 1) — m2][(p — q2)2 — M2]

» Ti: known kernel functions
» [1;: linear combinations of the I,

» 5 integrals can be performed with Gegenbauer polynomial
techniques

GC, Hoferichter, Procura, Stoffer (2015)
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Master Formula

After performing the 5 integrations:

3

HLbL __ 2a
a = —5X

i 372

0o 0o 1 12
x /dQ1 /d02 /mﬁo?ogzT,-(o1,oz,r)ﬁ/(o1,02,f)
0 0 -1 1

where Q" are the Wick-rotated? four-momenta and  the
four-dimensional angle between Euclidean momenta:

Q- Q= Q]| QT

The integration variables Q; := |Q], Qo := | Q|-

GC, Hoferichter, Procura, Stoffer (2015)

#Wick rotation can be performed safely here, even in the presence of
anomalous cuts.
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

_ 7C-pole FSQED | fj
I_INV)\U - nm/)\a + nw/)\a + I_I/W/\U + -

Pion pole: known
Projection on the BTT basis: done
Our master formula=explicit expressions in the literature
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

0. —
— I—Iﬂ' pole + I—IFSQED + I—IMV)\U + ...

I_IMV)\U' - " puvio 2N
In JHEP '14:
m,
FY (a7) F7 (a8) F (98) <
o

Contribution with two simultaneous cuts

— analytic properties like the box diagram in sQED

— triangle and bulb diagram required by gauge invariance
— multiplication with £ gives the correct g2 dependence
Claim: FsQED is not an approximation!
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

0-pole FSQED | f
I_INV)\O' = I_IZV)F\JO' + 1 iy + rl,uz//\a +

2N

Now, with BTT:

— we have constructed a Mandelstam representation for the
contribution of the 2-pion cut with LHC due to a pion pole
— we have explicitly checked that this is identical to FSQED

Proven: FsQED is not an approximation!



HLbL dispersive Master Formula Dispersive calc. 7-box -resc.

Setting up the dispersive calculation

We split the HLbL tensor as follows:

_ p-pole FSQED |
I_INV)\U - n;w)\a + nuu)\a + I_I/W/\G + -

- -

4 N\

N\
~

4

7
~ o -

The “rest” with 27 intermediate states has cuts only in one
channel and will be
calculated dispersively after partial-wave expansion
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Setting up the dispersive calculation
We split the HLbL tensor as follows:

|-|7r°-pole

— FsQED I
I_INV)\U - Vuvdo + rl,ul/)\a + rIlW/\U +

Contributions of cuts with anything else other than one and two
pions in intermediate states will be neglected for the time being
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Pion box contribution

70-pole
2

FIFSQED | [

I_IMV)\U =TI 2Ne
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Pion box contribution

The only ingredient needed for the pion-box contribution is the
vector form factor

NFSCED — F7(g2)Fi(g3) Fi(a8) e (s, t, u)

1

5P = p; + aiAg(M2)
+ ] Bo(qF, M2, M2) + b2 By (3, M2, M2) + bY Bo(GB, M2, M2) + b} Bo(df, M2, M2)
+ b§By(s, M2, M2) + b By(t, M2, M2) + bY By (u, M2, M2)
+0/2Co(df, G5, 5, M2, M2, M2) + ¢f3Co(0F, 05, t, M2, ME M2 ) + o} * Co(df, df, u, M2, ME, M2)

+ 6 Co(05, A, 5. M2, M2 M2) + P4 Co (B, G, t, ME, M, M2) + 62 Co (05, 05, u, M2, M5, ME)
+d'Dy(, g5, G2, GB, s, t, M2, M2 M2 M)
+dDo(d, B, 05 G s, U, MEL M2 ME L MR
+d¥Dy(aF, 45, a5, G2, t, u, M2, M2 M2, M2

s Mz, Mo, Mo, M),

where By, Cy and D, are Passarino-Veltman functions



HLbL dispersive

Pion box contribution

0.9

0.8

0.6

g

£05
04
03
0.2

0.1

0.7

Master Formula Dispersive calc. 7-box

- o NA7(1986)

¢ ETMC - quadratic fit B
= m  ETMC - logarithmic fit f —

4 Volmer et al. (Fpi coll.) (2001) B
- Our fit —

— VMD 4
- g }F —
i o} ]
T S P E SO Y RO HEO N B B B R
-1.6 -1.5 -14 -13 -1.2 -1.1 -1 -09 -0.8 -0.7 -0.6 -0.5 -04 -03 -02 -0.1 0

0

Uncertainties will be tiny
Preliminary! numbers:

a, %P =-159-10""

s (GeV?)

T-resc.

anQED,VMD —_16.4- 10—11

1L
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Pion box contribution

Table 13

Summary of the most recent results for the various contributions to @}’ x 10", The last column is our estimate based on our new evaluation for the
pseudoscalars and some of the other results.

Contribution BPP HKS KN MV BP PdRV N/IN

7% 0. 85113 82764 83112 11410 = 114+13 99+ 16
m.K loops —19£13 —45+8.1 = = = —19+19 —19+£13
w, K loops + other subleading in N = = - 0+ 10 - - -

Axial vectors 25+10 T = 22+5 = 15+ 10 22+5
Scalars —68+20 - - - - -T£7 —-7+2
Quark loops 21%3 97 £11.1 - - - 23t 21+3
Toral 83132 896+ 154 8040 136:£25 110 = 40 105 £ 26 116 =39

Uncertainties will be tiny
Preliminary! numbers:

aﬁsQED — _159. 10—11 aEsQED,VMD — _16.4. 10—11
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Our dispersive representation of the M**A? tensor

GC, Hoferichter, Procura, Stoffer (2014)

_ p°-pole FSQED |
I_IIW)\U - n;u/)\a + n;w)\a + I_IIW)\U +oe
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Our dispersive representation of the M***“ tensor

15 GC, Hoferichter, Procura, Stoffer (2014)

e = 3 (AT (s) + AT + AL i) )

I?
i=1
» the I;(s) are single-variable functions having only a
right-hand cut
» for the discontinuity we keep only the lowest partial wave

» the dispersive integral that gives the I1;(s) in terms of its
discontinuity has the required soft-photon zeros

» soft-photon zeros constrain
the subtraction polynomial to vanish
(unless one wanted to subtract more, which is unnecessary)
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Dispersion relations for the I1;(s)

Requiring that the BTT functions be free of singularities
determines the kernels, including non-diagonal terms. S-waves:

2 F T
s—q ds - 26182 .
ns = - 3/3’—(72 K Imh9r+7++(sl)+ X Imh80’++(3/)

3 L

4m2

> R /

_ S— 03 ds 70 q1 q2 70
E= vl il () + £ I

4m2

_ 1 s —qf -3
=g s N

Remark: Imh9, . (s )and ImhY, , , (s) given by S-wave

b _ 00,++
helicity amplitudes of y*v* — o7

Once the projection on the BTT basis is done
= use the master formula to calculate the contribution to g,



HLbL dispersive Master Formula Dispersive calc. w-box ar-resc.

Dispersion relations for the I1;(s)

Requiring that the BTT functions be free of singularities
determines the kernels, including non-diagonal terms. S-waves:

2 F T
s—q ds - 26182 .
I_I;S = 3 / ; 5 Ki Imh3-+,++(3/) + V Imh80’++(3/)
4am2
> R /
s—q ds 29295
ng = 2 K, 1 + 22 Imh? ’]
y . S/_qg 1 00, ++( ) 5152)\/12 ++, ++( )
4am2
1 s —q°—q?
Ky = — ! 2
"y —s N

Remark: Imh9, . (s )and Imhg, ,

helicity amplitudes of y*v* — o7

(s) given by S-wave

Extension to D waves is in progress
(diagonal kernels already given explicitly in JHEP (14))
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Dispersion relations for y*v* — 7w

Roy-Steiner egs. = Dispersion relations + partial-wave expansion
+ crossing symmetry + unitarity + gauge invariance

150

v

On-shell vy — 7w prominent D-wave
reson. f(1270) moussaliam (10) Hoferichter, Philips, Schat (11)

> vy =T Moussallam (13) = 5,

©

» v*v* — 7w, new feature: anomalous @
thresholds Hoferichter, GC, Procura, Stoffer (13) %

125

100

Constraints

» Low energy: pion polar., ChPT )
» Primakoff: ym — 4 at L
COMPASS, JLAB LA
» Scattering: ete™ — ete n,
ete” — my z
» Decays: w,¢ — wmy

v
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Physics of v*v* — 7
» 7w rescattering < resonances, e.g.
,(1270)
» S-wave provides model-independent
implementation of the o

» Analytic continuation with dispersion
theory: resonance properties

» Precise determination of o-pole from
7 scattering Caprini, GC, Leutwyler 2006

M, = 44178 MeV T, = 544713 MeV

» Coupling o — ~~ from vy — 7w

Hoferichter, Phillips, Schat 2011 fo P

16UPC) — ot +H)
was fg(soo)

'6(500) PARTIAL WIDTHS A REVIEW GOES HERE — Check our WWW List of Reviews

r(vy) r2 £(500) T-MATRIX POLE V35
VALUE (keV) DOCUMENT 1D TECN  COMMENT Note that %2 Im(3p01e)
o o o We do not use the following data for averages, fits, limits, etc. o » o
VAL Qe pocumentip _ Tecu comvent

17 +0.4 54 HOFERICHTERIL  RVUE Compilation 400-550)i(200-350) OUR ESTIMATE
3.0840.82 55 11 RVUE Compilati oW

40,07 56 o 12 GARCIA-MAR .11 RVUE
20802 T30 MOUSSALLAMI1 ~ RVUE Compilation 13 CARCIAMAR 11 RVUE
2.08 57 MAO 09 RVUE Compilation ‘;M"USSAL“‘M" RVUE
12 +04 58 BERNABEU 08 RVUE Viaivaecaieiiiving

T R

6 MENNESSIER 10 RVUE
T T an M 10 £
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Conclusions

Outlook

Path to a numerical evaluation of HLbL contributions to a,:

>

>

derive explicit dispersion relations for D waves

take into account experimental constraints on the pion
transition form factor to evaluate the pion pole contribution

using as input a dispersive description of the
pion em form factor = evaluate the FSQED contribution

take into account experimental constraints on ~*)y — 77

estimate the dependence on the g2 of the second photon
(theoretically, there are no data yet on v*v* — )

= solve the dispersion relation for the helicity amplitudes
of v*+* — 7w

input the outcome into the master formula
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Partial waves for Y Y
Ty = T ete” —evte

(pion polarizabilities)(—(’Y’T - w)

Pion transition form factor
Froyeys (q%, qg)

Pion vector
form factor Fy}

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among theorists and experimentalists
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v

| have discussed a dispersive approach to the calculation
of the HLbL tensor

a crucial first step is the derivation of the BTT basis for the
HLbL tensor, which | have presented here

we have derived a master formula which expresses the
contributions to g, in terms of BTT functions

we plan to take into account only single- and double-pion
intermediate states
[and all other 1-particle intermediate states (n, 7/, .. .)]

this is a first step towards a model-independent,
data-driven calculation of the HLbL contribution to a,,
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