#### **Deuteron Electromagnetic Structure in Holographic QCD**

Valery Lyubovitskij

Institute of Theoretical Physics, University of Tübingen



*in collaboration with* Thomas Gutsche Ivan Schmidt Alfredo Vega

PRD 91, 114001, 054028 (2015) PRD 90, 096007; 89, 0054033 (2014) PRD 87, 016017, 056001 (2013) PRD 86, 036007 (2012); 83, 036001 (2011) PRD 85, 076003, 096004 (2012) PRD 82, 074022 (2010); 80, 055014 (2009)

Radio MonteCarlo WG, 19 May 2016, LNF

## **Plan of the Talk**

- Introduction
- Hadron Stucture in Holographic QCD
- Application to Deuteron Electromagnetic FF and Stucture Functions
- Conclusions

#### 1993 't Hooft Holographic Principle

Information about string theory contained in some region of space can be represented as "Hologram" (theory which lives on the boundary of that region)

- 1997-1998 Maldacena, Polyakov, Witten et al AdS/CFT correspondence
   Duality of 4D conformal supersymmetric Yang-Mills and supersting theories
  - Matching partition functions gives relation between parameters Strings  $g_s$  – coupling,  $l_s$  – length, R – AdS radius SU(N) YM  $g_{YM}$  – coupling, 't Hooft coupling  $\lambda = g_{YM}^2 N$  $2\pi g_s = g_{YM}^2$ ,  $\frac{R^4}{l_s^4} = 2 g_{YM}^2 N$
  - Symmetry arguments: Conformal group acting in boundary theory isomorphic to SO(4,2) the isometry group of AdS<sub>5</sub> space

- AdS/CFT  $\rightarrow$  AdS/QCD upon breaking conformal invariance
- AdS/QCD = Holographic QCD (HQCD) approximation to QCD: attempt to model Hadronic Physics in terms of fields/strings living in extra dimensions – anti-de Sitter (AdS) space
- HQCD models reproduce main features of QCD at low and high energies: chiral symmetry, confinement, power scaling of hadron form factors
- Physical interpretation of extra 5th dimension as Scale

AdS metric Poincaré form

$$ds^2 = g_{MN}(z) dx^M dx^N = \frac{R^2}{z^2} \left( dx_\mu dx^\mu - dz^2 \right) \quad R - \text{AdS radius}$$

• Metric Tensor 
$$g_{MN}(z) = \epsilon^a_M(z) \epsilon^b_N(z) \eta_{ab}$$

- Vielbein  $\epsilon^a_M(z) = \frac{R}{z} \, \delta^a_M$  (relates AdS and Lorentz metric)
- Manifestly scale-invariant  $x \to \lambda x$ ,  $z \to \lambda z$ .
- z extra dimensional (holographic) coordinate;<math>z = 0 is UV boundary,  $z = \infty$  is IR boundary
- Five Dimensions: L = Length, W = Width, H = Height, T = Time, S = Scale

• Action for scalar field

$$S_{\Phi} = \frac{1}{2} \int d^d x dz \sqrt{g} e^{-\varphi(z)} \left( \partial_M \Phi(x, z) \partial^M \Phi(x, z) - m^2 \Phi^2(x, z) \right)$$

• Dilaton field  $\varphi(z) = \kappa^2 z^2$ 

• 
$$g = |\det g_{MN}|$$

- m-5d mass,  $m^2R^2 = \Delta(\Delta-4)$ ,  $\Delta = -3$  conformal dimension
- Kaluza-Klein (KK) expansion  $\Phi(x, z) = \sum_{n} \phi_n(x) \Phi_n(z)$
- Tower of KK modes  $\phi_n(x)$  dual to 4-dimensional fields describing hadrons
- Bulk profiles  $\Phi_n(z)$  dual to hadronic wave functions

• Use 
$$-\partial_{\mu}\partial^{\mu}\phi_n(x) = M_n^2\phi_n(x)$$

Substitute

$$\Phi_n(z) = \left(\frac{R}{z}\right)^{1-d} \phi_n(z)$$

• Identify  $\Delta = \tau = N + L$  (here N = 2 – number of partons in meson)

$$\left[-\frac{d^2}{dz^2} + \frac{4L^2 - 1}{4z^2} + \kappa^4 z^2 - 2\kappa^2\right]\phi_n(z) = M_n^2\phi_n(z)$$

• Solutions: 
$$\phi_{nL}(z) = \sqrt{\frac{2\Gamma(n+1)}{\Gamma(n+L+1)}} \kappa^{L+1} z^{L+1/2} e^{-\kappa^2 z^2/2} L_n^L(\kappa^2 z^2)$$

•  $M_{nL}^2 = 4\kappa^2 \left(n + \frac{L}{2}\right)$ 

• Massless pion  $M_{\pi}^2 = 0$  for n = L = 0 Brodsky, Téramond

• "Positive dilaton": Brodsky, Téramond

$$S_{\Phi}^{+} = \frac{1}{2} \int d^{d}x dz \sqrt{g} e^{\varphi(z)} \left[ \partial_{M} \Phi_{+} \partial^{M} \Phi_{+} - m^{2} \Phi_{+}^{2} \right]$$

• "Negative dilaton": Gutsche, Lyubovitskij, Schmidt, Vega PRD 85 (2012) 076003

$$S_{\Phi}^{-} = \frac{1}{2} \int d^d x dz \sqrt{g} e^{-\varphi(z)} \left[ \partial_M \Phi_- \partial^M \Phi_- - (m^2 + U(z)) \Phi_-^2 \right]$$

**Potential** 

$$U(z) = \frac{z^2}{R^2} \left( \varphi''(z) + \frac{1-d}{z} \varphi'(z) \right)$$

"No-wall"

$$S_{\Phi} = \frac{1}{2} \int d^d x dz \sqrt{g} \left[ \partial_M \Phi \partial^M \Phi - (m^2 + V(z)) \Phi^2 \right]$$

Potential

$$V(z) = \frac{z^2}{R^2} \left( \frac{1}{2} \varphi''(z) + \frac{1}{4} (\varphi'(z))^2 + \frac{1-d}{2z} \varphi'(z) \right)$$

• All 3 actions are equivalent upon the field rescaling  $\Phi_{\pm} = e^{\mp \varphi(z)} \Phi_{\mp} = e^{\mp \varphi(z)/2} \Phi$ 

Extension to higher-spin AdS boson (mesons)

Fields 
$$\Phi \rightarrow \Phi_{M_1 M_2 \cdots M_J}$$

5d mass  $m^2 R^2 \rightarrow m_J^2 R^2 = (\Delta - J)(\Delta + J - 4)$ 

Dilaton potential

$$U_J(z) = \frac{z^2}{R^2} \left( \varphi''(z) + \frac{1+2J-d}{z} \varphi'(z) \right)$$

#### Solutions

• 
$$\phi_{nL}(z) = \sqrt{\frac{2\Gamma(n+1)}{\Gamma(n+L)}} \kappa^{L+1} z^{L+1/2} e^{-\kappa^2 z^2/2} L_n^L(\kappa^2 z^2)$$

• 
$$M_{nLJ}^2 = 4\kappa^2 \left(n + \frac{L+J}{2}\right)$$

- Scattering problem for AdS field gives information about propagation of external field from z to the boundary z = 0 bulk-to-boundary propagator  $\Phi_{\text{ext}}(q, z)$ [Fourier-trasform of AdS field  $\Phi_{\text{ext}}(x, z)$ ]:  $\Phi_{\text{ext}}(q, z) = \int d^d x e^{-iqx} \Phi_{\text{ext}}(x, z)$
- Vector field as example

$$\partial_z \left( \frac{e^{-\varphi(z)}}{z} \partial_z V(q, z) \right) + q^2 \frac{e^{-\varphi(z)}}{z} V(q, z) = 0.$$
$$V(Q, z) = \Gamma \left( 1 + \frac{Q^2}{4\kappa^2} \right) U \left( \frac{Q^2}{4\kappa^2}, 0, \kappa^2 z^2 \right)$$

Consistent with GI, fulfills UV and IR boundary conditions :  $V(Q,0)=1\,,\ V(Q,\infty)=0$ 

Hadron form factors

$$F_{\tau}(Q^2) = \langle \phi_{\tau} | \hat{V}(Q) | \phi_{\tau} \rangle = \int_{0}^{\infty} dz \, \phi_{\tau}^2(z) \, V(Q,z) = \frac{\Gamma(\tau) \, \Gamma(a+1)}{\Gamma(a+\tau)}$$

is implemented by a nontrivial dependence of AdS fields on 5-th coordinate

• Power scaling at large  $Q^2$ 

$$F_{\tau}(Q^2) \sim \frac{1}{(Q^2)^{\tau-1}}$$

Quark counting rules: Matveev-Muradyan-Tavhelidze-Brodsky-Farrar

Pion : 
$$\frac{1}{Q^2}$$
  
Nucleon(Dirac) :  $\frac{1}{Q^4}$   
Nucleon(Pauli) :  $\frac{1}{Q^6}$   
Deuteron(Charge) :  $\frac{1}{Q^{10}}$ 

## **Mesons: pion form factor**



#### Scale parameter $\kappa = 383 \text{ MeV}$

#### Mass and electromagnetic properties of nucleons

| Quantity                       | Our results | Data                        |
|--------------------------------|-------------|-----------------------------|
| $m_p$ (GeV)                    | 0.93827     | 0.93827                     |
| $\mu_p$ (in n.m.)              | 2.793       | 2.793                       |
| $\mu_n$ (in n.m.)              | -1.913      | -1.913                      |
| $r_{E}^{p}$ (fm)               | 0.840       | $0.8768 \pm 0.0069$         |
| $\langle r_E^2  angle^n$ (fm²) | -0.117      | $-0.1161 \pm 0.0022$        |
| $r^p_M$ (fm)                   | 0.785       | $0.777 \pm 0.013 \pm 0.010$ |
| $r_{M}^{n}$ (fm)               | 0.792       | $0.862^{+0.009}_{-0.008}$   |
| $r_A$ (fm)                     | 0.667       | 0.67±0.01                   |







Dotted line: approximation by Stan Brodsky

• Put n = 1 and get solutions dual to Roper:

$$M_{\mathcal{R}} \simeq 1440 \text{ MeV}$$

•  $N \rightarrow R + \gamma$  transition

$$M^{\mu} = \bar{u}_{\mathcal{R}} \left[ \gamma^{\mu}_{\perp} F_1(q^2) + i\sigma^{\mu\nu} \frac{q_{\nu}}{M_{\mathcal{R}}} F_2(q^2) \right] u_N , \quad \gamma^{\mu}_{\perp} = \gamma^{\mu} - q^{\mu} \frac{\not{q}}{q^2}$$

Helicity amplitudes

$$H_{\pm\frac{1}{2}0} = \sqrt{\frac{Q_{-}}{Q^{2}}} \left(F_{1}M_{+} - F_{2}\frac{Q^{2}}{M_{\mathcal{R}}}\right)$$
$$H_{\pm\frac{1}{2}\pm1} = -\sqrt{2Q_{-}} \left(F_{1} + F_{2}\frac{M_{+}}{M_{\mathcal{R}}}\right)$$

Alternative set [Weber, Capstick, Copley et al]

$$A_{1/2} = -b H_{\frac{1}{2}1}, \quad S_{1/2} = b \frac{|\mathbf{p}|}{\sqrt{Q^2}} H_{\frac{1}{2}0},$$
$$Q_{\pm} = M_{\pm}^2 + Q^2, \quad M_{\pm} = M_{\mathcal{R}} \pm M_N, \quad b = 1$$

 $\frac{\pi\alpha}{2EM_{\mathcal{R}}M_N}$ 

Helicity amplitudes  $A_{1/2}^N(0)$ ,  $S_{1/2}^N(0)$ 

| Quantity                          | Our results | Data                                 |
|-----------------------------------|-------------|--------------------------------------|
| $A^p_{1/2}(0)$ (GeV $^{-1/2}$ )   | -0.065      | $\textbf{-0.065} \pm \textbf{0.004}$ |
| $A_{1/2}^n(0)$ (GeV $^{-1/2}$ )   | 0.040       | $0.040\pm0.010$                      |
| $S^p_{1/2}(0)~({\rm GeV}^{-1/2})$ | 0.040       |                                      |
| $S^p_{1/2}(0)~({\rm GeV}^{-1/2})$ | -0.040      |                                      |

Helicity amplitude  $A^p_{1/2}(Q^2)$ 



Data: CLAS Coll at JLab, Mokeev et al, PRC86 (2012) 035203

Helicity amplitude  $S^p_{1/2}(Q^2)$ 



Data: CLAS Coll at JLab, Mokeev et al, PRC86 (2012) 035203

#### Strategy

- We first propose an effective action describing the dynamics of the deuteron in the presence of an external vector field
- Based on this action the deuteron electromagnetic form factors are calculated, displaying the correct  $1/Q^{10}$  power scaling for large  $Q^2$  values.
- This finding is consistent with quark counting rules and the earlier observation that this result holds in confining gauge/gravity duals.
- The  $Q^2$  dependence of the deuteron form factors is defined by a single and universal scale parameter  $\kappa$ , which is fixed from data.

- Effective action in terms of AdS fields  $d^M(x,z)$  and  $V^M(x,z)$
- $d^M(x,z)$  dual to Fock component contributing to deuteron with twist  $\tau = 6$
- $V^M(x,z)$  dual to the electromagnetic field

$$S = \int d^{4}x dz \, e^{-\varphi(z)} \left[ -\frac{1}{4} F_{MN}(x, z) F^{MN}(x, z) - D^{M} d_{N}^{\dagger}(x, z) D_{M} d^{N}(x, z) \right. \\ \left. - \, i c_{2}(z) F^{MN}(x, z) d_{M}^{\dagger}(x, z) d_{N}(x, z) \right. \\ \left. + \, \frac{c_{3}(z)}{4M_{d}^{2}} \partial^{M} F^{NK}(x, z) \left( -d_{M}^{\dagger}(x, z) \stackrel{\leftrightarrow}{D}_{K} d_{N}(x, z) + \text{H.c.} \right) \right. \\ \left. + \, d_{M}^{\dagger}(x, z) \left( \mu^{2} + U(z) \right) d^{M}(x, z) \right]$$

•  $F^{MN} = \partial^M V^N - \partial^N V^M$  - stress tensor of vector field

 $D^M = \partial^M - i e V^M(x,z)$  - covariant derivative

 $\mu^2 R^2 = (\Delta-1)(\Delta-3)$  - five-dimensional mass

 $\Delta = 6 + L$  is the dimension of  $d^M(x, z)$ 

L is the maximum value orbital angular momentum

 $U(z) = U_0 \varphi(z)/R^2$  is the confinement potential

 $U_0$  is constant fixed the deuteron mass.

Use axial gauge for both vector fields  $d^{z}(x, z) = 0$  and  $V^{z}(x, z) = 0$ 

 First perform Kaluza-Klein (KK) decomposition for vector AdS field dual to deuteron

$$d^{\mu}(x,z) = \exp\left[\frac{\varphi(z) - A(z)}{2}\right] \sum_{n} d^{\mu}_{n}(x) \Phi_{n}(z) ,$$

 $d_n^{\mu}(x)$  is the tower of the KK fields dual to the deuteron fields with radial quantum number *n* and twist-dimension  $\tau = 6$ , and  $\Phi_n(z)$  are their bulk profiles. Then we derive the Schrödinger-type equation of motion for the bulk profile

$$\left[-\frac{d^2}{dz^2} + \frac{4(L+4)^2 - 1}{4z^2} + \kappa^4 z^2 + \kappa^2 U_0\right] \Phi_n(z) = M_{d,n}^2 \Phi_n(z) .$$

The analytical solutions of this EOM read

$$\Phi_n(z) = \sqrt{\frac{2n!}{(n+L+4)!}} \kappa^{L+5} z^{L+9/2} e^{-\kappa^2 z^2/2} L_n^{L+4}(\kappa^2 z^2),$$
  
$$M_{d,n}^2 = 4\kappa^2 \left[ n + \frac{L+5}{2} + \frac{U_0}{4} \right],$$

where  $L_n^m(x)$  are the generalized Laguerre polynomials.

- Restricting to the ground state (n = 0, L = 0) we get  $M_d = 2\kappa \sqrt{\frac{5}{2} + \frac{U_0}{4}}$
- Using central value for deuteron mass  $M_d = 1.875613$  GeV and  $\kappa = 190$  MeV (fitted from data on electromagnetic deuteron form factors), we fix  $U_0 = 87.4494$ .

- We can compare this value for the deuteron scale parameter to the analogous one of  $\kappa_N$  defining the nucleon properties mass and electromagnetic form factors. In description of nucleon case we fixed the value to  $\kappa_N \simeq 380$  MeV, which is 2 times bigger than the deuteron scale parameter  $\kappa$ .
- Difference between the nucleon and deuteron scale parameters can be related to the change of size of the hadronic systems - the deuteron as a two-nucleon bound state is 2 times larger than the nucleon.

 The gauge-invariant matrix element describing the interaction of the deuteron with the external vector field (dual to the electromagnetic field) reads

$$M_{\rm inv}^{\mu}(p,p') = -\left(G_1(Q^2)\epsilon^*(p')\cdot\epsilon(p) - \frac{G_3(Q^2)}{2M_d^2}\epsilon^*(p')\cdot q\,\epsilon(p)\cdot q\right)(p+p')^{\mu}$$
$$- G_2(Q^2)\left(\epsilon^{\mu}(p)\,\epsilon^*(p')\cdot q - \epsilon^{*\mu}(p')\,\epsilon(p)\cdot q\right)$$

where  $\epsilon(\epsilon^*)$  and p(p') are the polarization and four-momentum of the initial (final) deuteron, and q = p' - p is the momentum transfer.

- Three EM form factors  $G_{1,2,3}$  of the deuteron are related to the charge  $G_C$ , quadrupole  $G_Q$  and magnetic  $G_M$  form factors by
- Expressions for the form factors

$$G_C = G_1 + \frac{2}{3}\tau_d G_Q$$
,  $G_M = G_2$ ,  $G_Q = G_1 - G_2 + (1 + \tau_d)G_3$ ,  $\tau_d = \frac{Q^2}{4M_d^2}$ 

These form factors are normalized at zero recoil as

$$G_C(0) = 1$$
,  $G_Q(0) = M_d^2 \mathcal{Q}_d = 25.83$ ,  $G_M(0) = \frac{M_d}{M_N} \mu_d = 1.714$ 

•  $Q_d = 7.3424 \text{ GeV}^{-2}$  and  $\mu_d = 0.8574 - \text{quadrupole}$  and magnetic moments of the deuteron.

Structure functions

$$\begin{split} A(Q^2) &= G_C^2(Q^2) + \frac{2}{3}\tau_d G_M^2(Q^2) + \frac{8}{9}\tau_d^2 G_Q^2(Q^2) \,, \\ B(Q^2) &= \frac{4}{3}\tau_d(1+\tau_d)G_M^2(Q^2) \,. \end{split}$$

• Scaling at large  $Q^2$ 

Leading: 
$$A(Q^2) \sim B(Q^2) \sim G_C^2(Q^2) \sim G_1(Q^2) \sim 1/Q^{10}$$
  
Subleading:  $G_M(Q^2) \sim G_Q^2(Q^2) \sim G_2(Q^2) \sim 1/Q^{12}$ 

It fixes the z dependence of  $c_2(z)$  and  $c_3(z)$ 

$$c_2(z) = \frac{M_d}{30M_N} \mu_d \kappa^2 z^2$$
  

$$c_3(z) = \left( M_d^2 \mathcal{Q}_d - 1 + \frac{M_d}{30M_N} \mu_d \right) \kappa^2 z^2$$

- Numerical results for the charge  $G_C(Q^2)$ , quadrupole  $G_Q(Q^2)$  and magnetic  $G_M(Q^2)$  FF
- Shaded band corresponds to values of  $\kappa$  in range of 150 MeV <  $\kappa$  < 250 MeV.
- Increase of the parameter  $\kappa$  leads to an enhancement of the form factors.
- The best description of the data on the deuteron form factors is obtained for  $\kappa = 190$  MeV and is shown by the solid line.





Charge radius  $r_C = (-6G'_C(0))^{1/2} = 1.85 \text{ fm}$ Data:  $r_C = 2.13 \pm 0.01 \text{ fm}$ 

Magnetic radius  $r_M = (-6G'_M(0)/G_M(0))^{1/2} = 2.29$  fm Data  $r_M = 1.90 \pm 0.14$  fm.

#### **Summary**

- AdS/QCD = Holographic QCD (HQCD) approximation to QCD: attempt to model Hadronic Physics in terms of fields/strings living in extra dimensions – anti-de Sitter (AdS) space
- HQCD models reproduce main features of QCD at low and high energies
- Soft–wall holographic approach covariant and analytic model for hadron structure with confinement at large distances and conformal behavior at short distances
- Mesons, baryons, exotics from unified point view and including high Fock states