Claim of discoveris based on sigma's

Giulio D'Agostini

giulio.dagostini@roma1.infn.it
http://www.roma1.infn.it/~dagos/

Università La Sapienza e INFN, Roma, Italy

Preamble

(First slides from AT seminars at CERN)

Statistics lectures?

If I insist on probability, rather than speaking, very generally, about statistics, it is because I have good reasons.

Statistics lectures?

As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.
(Einstein)

Statistics lectures?

"If we were not ignorant there would be no probability, there could only be certainty.

Statistics lectures?

"If we were not ignorant there would be no probability, there could only be certainty. But our ignorance cannot be absolute, for then there would be no longer any probability at all.

Statistics lectures?

"If we were not ignorant there would be no probability, there could only be certainty. But our ignorance cannot be absolute, for then there would be no longer any probability at all. Thus the problems of probability may be classed according to the greater or less depth of our ignorance." (Poincaré)

Statistics lectures?

"It is scientific only to say what is more likely and what is less likely"
(Feynman)

Statistics and truth (from lectures at CERN)

Title of the lectures ("Telling the truth with statistics")

Statistics and truth (from lectures at CERN)

Title of the lectures ("Telling the truth with statistics")

- proposed by organizers \rightarrow accepted...

Statistics and truth (from lectures at CERN)

Title of the lectures ("Telling the truth with statistics")

- proposed by organizers \rightarrow accepted...
- I interpret it as a direct question, to which I will try to give my best answer

Statistics and truth (from lectures at CERN)

Title of the lectures ("Telling the truth with statistics")

- proposed by organizers \rightarrow accepted...
- I interpret it as a direct question, to which I will try to give my best answer, quite frankly.
- How to interpret the question?

1. "Tell the Truth"?

- What is the true value of a quantity?
- What is the true theory that describes the world?

2. "Tell the truth" \Longleftrightarrow "to lie"?

Statistics and truth (from lectures at CERN)

Title of the lectures ("Telling the truth with statistics")

- proposed by organizers \rightarrow accepted. . .
- I interpret it as a direct question, to which I will try to give my best answer, quite frankly.
- How to interpret the question?

1. "Tell the Truth"?

$$
\Rightarrow \text { Question to God }
$$

- What is the true value of a quantity?
- What is the true theory that describes the world?

2. "Tell the truth" \Longleftrightarrow "to lie"?

Statistics and truth (from lectures at CERN)

Title of the lectures ("Telling the truth with statistics")

- proposed by organizers \rightarrow accepted...
- I interpret it as a direct question, to which I will try to give my best answer, quite frankly.
- How to interpret the question?

1. "Tell the Truth"?

$$
\Rightarrow \text { Question to God }
$$

- What is the true value of a quantity?
- What is the true theory that describes the world?

2. "Tell the truth" \Longleftrightarrow "to lie"? \Rightarrow Not fair

Statistics and truth (from lectures at CERN)

Title of the lectures ("Telling the truth with statistics")

- proposed by organizers \rightarrow accepted. . .
- I interpret it as a direct question, to which I will try to give my best answer, quite frankly.
- How to interpret the question?

1. "Tell the Truth"?

$$
\Rightarrow \text { Question to God }
$$

- What is the true value of a quantity?
- What is the true theory that describes the world?

2. "Tell the truth" \Longleftrightarrow "to lie"? \Rightarrow Not fair, though
"There are three kinds of lies: lies, damn lies, and statistics" (Benjamin Disraeli/Mark Twain)

Damned lies and statistics

Well known subject

Over Half a Million Copies SoldAn Honest-to-Goodness Bestseller

Walter Krämer So lügt man mit Statistik

Damned lies and statistics

Well known subject, especially in marketing and politics

BloombergView

Home
To most of us, 93-to-1 odds would make for a clear-cut bet. To
physicists? Not so much.

On Dec. 15, the New York Times reported that Santa may have
brought physics a new subatomic particle, a hitherto unknown entity
materializing in the giant collider at CERN, near Geneva. It wasn't a
sure thing, but according to the Times, the odds are in the scientists'
favor, with only a 1-in-93 chance that the data pointing to the particle
represent a statistical fluke.

Physicists in Europe Find Tantalizing Hints of a Mysterious New Particle

By DENNIS OVERBYE DEC. 15, 2015

E Email	Does the Higgs boson have a cousin?
Share	Two teams of physicists working independently at the Large
Tweet	Hadron Collider at CERN, the
European Organization for	

Researchers at the Large Hadron Collider at CERN are smashing together protons to search for new particles and forces.
Fabrice Coffrini/Agence France-Presse - Getty lmages

New York Times, 15 December 2015

"I don't think there is anyone around who thinks this is conclusive," said Kyle Cranmer, a physicist from New York University who works on one of the CERN teams, known as Atlas. "But it would be huge if true," he said, noting that many theorists had put their other work aside to study the new result.

When all the statistical effects are taken into consideration, Dr. Cranmer said, the bump in the Atlas data had about a 1-in-93 chance of being a fluke - far stronger than the 1 -in-3.5-million odds of mere chance, known as five-sigma, considered the gold standard for a discovery. That might not be enough to bother presenting in a talk except for the fact that the competing CERN team, named C.M.S., found a bump in the same place.

Le Scienze, 19 dicembre 2015

Tracce di ener:
Come risolvere il mi dell'espansione acc In edicola dal 4 ge

ABBONAMENTIE RINN

Qualcosa di nuovo da LHC? Solo il tempo lo dirà

(Cortesia Maximilien Brice/CERN)

Nuovi dati degli esperimenti ATLAS e CMS del Large Hadron Collider del CERN di Ginevra hanno mostrato un eccesso nella produzione di coppie di fotoni, localizzato a una massa particolare. Ma è ancora troppo presto per dire se sia un primo segno di una nuova era per la fisica delle particelle oppure solo una fluttuazione del rumore di fondo di Marco Delmastro

Le Scienze, 19 dicembre 2015

Nel caso dell'eccesso sullo spettro delle coppie di fotoni, se uno prende il grafico di ATLAS in cui la montagnola è più prominente, la probabilità che questa sia dovuta a una casualità è due su 10.000, dunque piuttosto piccola. Quando però consideriamo il fatto di aver cercato montagnole un po' dappertutto, allora questa probabilità aumenta a due su 100. I numeri di CMS sono persino più grandi, indicando una probabilità ancora più grande che si tratti solo di una fluttuazione del rumore di fondo.

Le Scienze, 19 dicembre 2015

Nel caso dell'eccesso sullo spettro delle coppie di fotoni, se uno prende il grafico di ATLAS in cui la montagnola è più prominente, la probabilità che questa sia dovuta a una casualità è due su 10.000 , dunque piuttosto piccola. Quando però consideriamo il fatto di aver cercato montagnole un po' dappertutto, allora questa probabilità aumenta a due su 100. I numeri di CMS sono persino più grandi, indicando una probabilità ancora più grande che si tratti solo di una fluttuazione del rumore di fondo.
"In the case of the excess in the two-photon spectrum, if one takes the ATLAS plot, where the bump is more prominent, the probability that this is due to randomness is 2 in 10,000, then rather small. When instead we consider the fact that we have been looking bumps everywhere, this probability increases to 2 in 100. CMS numbers are even larger, indicating an even larger probability that it is just a fluctuation of the background."

Defining the issue

What do we mean by "statistics"?

Defining the issue

What do we mean by "statistics"?
Usually several things:

- descriptive statistics [e.g. Webster's (Kdict)]
- "The science which has to do with the collection and classification of certain facts respecting the condition of the people in a state."
- "(pl.) Classified facts respecting the condition of the people in a state, their health, their longevity, ... especially, those facts which can be stated in numbers, or in tables of numbers, or in any tabular and classified arrangement."
\Rightarrow extended to scientific data.

Defining the issue

What do we mean by "statistics"?
Usually several things:

- descriptive statistics [e.g. Webster's (Kdict)]
- "The science which has to do with the collection and classification of certain facts respecting the condition of the people in a state."
- "(pl.) Classified facts respecting the condition of the people in a state, their health, their longevity, ...especially, those facts which can be stated in numbers, or in tables of numbers, or in any tabular and classified arrangement."
\Rightarrow extended to scientific data.
- Probability theory
- Inference

Defining the issue

What do we mean by "statistics"?
Usually several things:

- descriptive statistics [e.g. Webster's (Kdict)]
- "The science which has to do with the collection and classification of certain facts respecting the condition of the people in a state."
- "(pl.) Classified facts respecting the condition of the people in a state, their health, their longevity, ...especially, those facts which can be stated in numbers, or in tables of numbers, or in any tabular and classified arrangement."
\Rightarrow extended to scientific data.
- Probability theory
- Inference \Rightarrow primary interest to physicists

Defining the issue

What do we mean by "statistics"?
... and all together:
"A branch of applied mathematics concerned with the collection and interpretation of quantitative data and the use of probability theory to estimate population parameters" [WordNet (Kdict)]

Defining the issue

What do we mean by "statistics"?
... and all together:
"A branch of applied mathematics concerned with the collection and interpretation of quantitative data and the use of probability theory to estimate population parameters" [WordNet (Kdict)]
\Rightarrow inferential aspect enhanced

Defining the issue

What do we mean by "statistics"?
... and all together:
"A branch of applied mathematics concerned with the collection and interpretation of quantitative data and the use of probability theory to "estimate population parameters [WordNet (Kdict)]
\Rightarrow inferential aspect enhanced
Though we physicists are usually not interested in population parameters, but rather on physics quantities, theories, and so on.

Defining the issue

What do we mean by "statistics"?
... and all together:
"A branch of applied mathematics concerned with the collection and interpretation of quantitative data and the use of probability theory to "estimate population parameters [WordNet (Kdict)]
\Rightarrow inferential aspect enhanced
Though we physicists are usually not interested in population parameters, but rather on physics quantities, theories, and so on.
Inference: learning about theoretical objects from experimental observations (see later)

Where are the problems?

Descriptive statistics Little to comment, apart that the process of summarizing 'a State' in a few numbers, in a diagram or in a table causes an enormous loss of detailed information, and this might lead to misunderstandings or even 'lies'.
\Rightarrow the famous 'half chicken' joke. ${ }^{\dagger}$

Where are the problems?

Descriptive statistics Little to comment, apart that the process of summarizing 'a State' in a few numbers, in a diagram or in a table causes an enormous loss of detailed information, and this might lead to misunderstandings or even 'lies'.
\Rightarrow the famous 'half chicken' joke. ${ }^{\dagger}$
Probability theory Essentially OK, if we only consider the mathematical apparatus.

Where are the problems?

Descriptive statistics Little to comment, apart that the process of summarizing 'a State' in a few numbers, in a diagram or in a table causes an enormous loss of detailed information, and this might lead to misunderstandings or even 'lies'.
\Rightarrow the famous 'half chicken' joke. ${ }^{\dagger}$
Probability theory Essentially OK, if we only consider the mathematical apparatus.
Inference Messy:

- Traditionally, a collection of ad hoc prescriptions ... accepted more by authority than by full awareness of what they mean
\Rightarrow The physicist is confused ${ }^{\dagger}$ between good sense and statistics education

Where are the problems?

Descriptive statistics Little to comment, apart that the process of summarizing 'a State' in a few numbers, in a diagram or in a table causes an enormous loss of detailed information, and this might lead to misunderstandings or even 'lies'.
\Rightarrow the famous 'half chicken' joke. ${ }^{\dagger}$
Probability theory Essentially OK, if we only consider the mathematical apparatus.
Inference Do better?

- Much improvement is gained if inference is grounded on probability theory

Where are the problems?

Descriptive statistics Little to comment, apart that the process of summarizing 'a State' in a few numbers, in a diagram or in a table causes an enormous loss of detailed information, and this might lead to misunderstandings or even 'lies'.
\Rightarrow the famous 'half chicken' joke. ${ }^{\dagger}$
Probability theory Essentially OK, if we only consider the mathematical apparatus.

- Much improvement is gained if inference is grounded on probability theory
- Summaries of descriptive statistics can be used in those cases in which statistical sufficiency holds
(e.g. when we use the sample arithmetic average and standard deviation, instead of the n data points)

Statistics \leftrightarrow probability

The fact that statistical results are often "misinterpreted" is rather well known.

Statistics \leftrightarrow probability

The fact that statistical results are often "misinterpreted" is rather well known.

But not because the general public is made of idiots!

Statistics \leftrightarrow probability

The fact that statistical results are often "misinterpreted" is rather well known.

But not because the general public is made of idiots!
It is just because the 'conventional' statistical school misuses words and convey wrong messages
(also among expert practitioners, as most physicists).

Statistics \leftrightarrow probability

The fact that statistical results are often "misinterpreted" is rather well known.

But not because the general public is made of idiots!
It is just because the 'conventional' statistical school misuses words and convey wrong messages
(also among expert practitioners, as most physicists).

2011: non only Opera. . .

- April, CDF: absolutely unexpected excess at about 150 GeV

$$
\approx 3.2 \sigma
$$

- September, Opera: neutrinos faster than light

$$
\approx 6 \sigma
$$

- December, ATLAS e CMS at LHC: signal compatible with the Higgs at about 125 GeV :

2011: non only Opera. . .

- April, CDF: absolutely unexpected excess at about 150 GeV

$$
\approx 3.2 \sigma
$$

- September, Opera: neutrinos faster than light

$$
\approx 6 \sigma
$$

- December, ATLAS e CMS at LHC: signal compatible with the Higgs at about 125 GeV :

Why there was substancial scepticism towards the first two anouncements, in constrast with a cautious/pronounced optimism towards the third one?

April 2011

CDF Collaboration at the Tevatron

April 2011

CDF Collaboration at the Tevatron

April 2011

CDF Collaboration at the Tevatron

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations"

April 2011

CDF Collaboration at the Tevatron

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations"

April 2011

CDF Collaboration at the Tevatron

What does it mean?

Tevatron and CDF

6.28 km, near Chicago

Tevatron and CDF

$$
p \rightarrow \cdot \leftarrow \bar{p} \quad[\approx 1 \mathrm{TeV}+1 \mathrm{TeV}]
$$

Tevatron and CDF

CDF: a multipurpose ('hermetic') detector

(C) GdA, Bologna, 29/04/16 - 16/76

Tevatron and CDF

... a large, very sophisticated detector!

(C) GdA, Bologna, 29/04/16 - 16/76

Jet-jet + W

$W+(q \bar{q}) \quad[+$ 'remnants']

Jet-jet + W

$W+2$ jet [+ much more $]$

Jet-jet + W

$$
\Rightarrow M_{j j}+W+\ldots
$$

The 'bump'!

Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in $p \bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV', (CDF, 4 aprile 2011)

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 σ "]

The 'bump'!

Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in $p \bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV', (CDF, 4 aprile 2011)

What does it mean?

Sigma and gaussian distribution

Princeps mathematicorum

```
GS7181280U5
```


Sigma and gaussian distribution

"Functio nostra fiet. .."

Sigma e probability [gaussian!]

If the random number X is described by a gaussian pdf

$$
\begin{aligned}
P(-\sigma \leq X \leq+\sigma) & =68.3 \% \\
P(-2 \sigma \leq X \leq+2 \sigma) & =95.4 \% \\
P(-3 \sigma \leq X \leq+3 \sigma) & =99.73 \% \\
1-P(-3 \sigma \leq X \leq+3 \sigma) & =0.27 \% \\
1-P(-4 \sigma \leq X \leq+4 \sigma) & =6.3 \times 10^{-5} \\
\ldots & =\ldots \\
1-P(-6 \sigma \leq X \leq+6 \sigma) & =2.0 \times 10^{-9} \\
1-P(-3.2 \sigma \leq X \leq+3.2 \sigma) & =1.4 \times 10^{-3} \\
P(X \geq+3.17 \sigma) & =7.6 \times 10^{-4}
\end{aligned}
$$

p -value, significance and sigma

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 σ "]

p -value, significance and sigma

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 $\sigma^{\prime \prime}$]

p -value, significance and sigma

> "we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 σ "]

- What is a p-value?
- In so far does it provides us a 'significance'?

p -value, significance and sigma

"we obtain a p-value of 7.6×10^{-4}, corresponding to a significance of 3.2 standard deviations" ["3.2 σ "]

Begin to fasten seat belts!

- What is a p-value?
- In so far does it provides us a 'significance'?

In short,

- Is 7.6×10^{-4} a probability?
- of what?

April 2011, the 'bump' explodes

The New York Times, Tuesday, April 5:
"Physicists at the Fermi National Accelerator Laboratory are planning to announce Wednesday that they have found a suspicious bump in their data that could be evidence of a new elementary particle or even, some say, a new force of nature.

The experimenters estimate that there is a less than a quarter of 1 percent chance their bump is a statistical fluctuation"

April 2011, the 'bump' explodes

The New York Times, Tuesday, April 5:
"Physicists at the Fermi National Accelerator Laboratory are planning to announce Wednesday that they have found a suspicious bump in their data that could be evidence of a new elementary particle or even, some say, a new force of nature.

The experimenters estimate that there is a less than a quarter of 1 percent chance their bump is a statistical fluctuation"
$P($ Statistical fluctuation $) \leq 0.25 \%$!

April 2011, the 'bump' explodes

The New York Times, Tuesday, April 5:
"Physicists at the Fermi National Accelerator Laboratory are planning to announce Wednesday that they have found a suspicious bump in their data that could be evidence of a new elementary particle or even, some say, a new force of nature.

The experimenters estimate that there is a less than a quarter of 1 percent chance their bump is a statistical fluctuation"
$P($ Statistical fluctuation $) \leq 0.25 \%$!
$P($ True Signal $) \geq 99.75 \%$!!

April 2011, the 'bump' explodes

The New York Times, Tuesday, April 5:
"Physicists at the Fermi National Accelerator Laboratory are planning to announce Wednesday that they have found a suspicious bump in their data that could be evidence of a new elementary particle or even, some say, a new force of nature.

The experimenters estimate that there is a less than a quarter of 1 percent chance their bump is a statistical fluctuation"
$P($ Statistical fluctuation $) \leq 0.25 \%$!
$P($ True Signal $) \geq 99.75 \%$!!
Eureka!!

April 2011, the 'bump' explodes

The New York Times, Tuesday April 5:
"the most significant in physics in half a century"

April 2011, the 'bump' explodes

The New York Times, Tuesday April 5:
"the most significant in physics in half a century"
[Do not ask me how 7.6×10^{-4} becomes $<2.5 \times 10^{-3}$ (but this can be considere a minor detail...)]

April 2011, the 'bump' explodes

The New York Times, Tuesday April 5:
"the most significant in physics in half a century"
Much more important the unusual fact that an ArXiV appeared one day was commented by NYT the day after!

April 2011, the 'bump' explodes

The New York Times, Tuesday April 5:
"the most significant in physics in half a century"
Much more important the unusual fact that an ArXiV appeared one day was commented by NYT the day after!

Who believed it was - at 99.75\%! - a discover?

- the journalist who reported the news?
- the CDF contactperson and/or the Fermilab PR's who contacted him?

April 2011, the 'bump' explodes

The New York Times, Tuesday April 5:

"the most significant in physics in half a century"

Much more important the unusual fact that an ArXiV appeared one day was commented by NYT the day after!

Who believed it was - at 99.75\%! - a discover?

- the journalist who reported the news?
- the CDF contactperson and/or the Fermilab PR's who contacted him?

From my experience, journalists might make imprecisions, bad they do not invent pieces of news [... at least scientific ones. . .:-)]

April 2011, the 'bump' explodes

The New York Times, Tuesday April 5:

```
"the most significant in physics in half a century"
```

Much more important the unusual fact that an ArXiV appeared one day was commented by NYT the day after!

In other terms, we do not organize an official seminar in the physics department everytime a student 'discovers' a new effect in the lab!

April 2011, the 'bump' explodes

Fermilab Today, April 7:
"Wednesday afternoon, the CDF collaboration announced that it has evidence of a peak in a specific sample of its data. The peak is an excess of particle collision events that produce a W boson accompanied by two hadronic jets. This peak showed up in a mass region where we did not expect one.

April 2011, the 'bump' explodes

Fermilab Today, April 7:
"Wednesday afternoon, the CDF collaboration announced that it has evidence of a peak in a specific sample of its data. The peak is an excess of particle collision events that produce a W boson accompanied by two hadronic jets. This peak showed up in a mass region where we did not expect one.

The significance of this excess was determined to be 3.2 sigma, after accounting for the effect of systematic uncertainties. This means that there is less than a 1 in 1375 chance that the effect is mimicked by a statistical fluctuation."

April 2011, the 'bump' explodes

Fermilab Today, April 7:
"Wednesday afternoon, the CDF collaboration announced that it has evidence of a peak in a specific sample of its data. The peak is an excess of particle collision events that produce a W boson accompanied by two hadronic jets. This peak showed up in a mass region where we did not expect one.

The significance of this excess was determined to be 3.2 sigma, after accounting for the effect of systematic uncertainties. This means that there is less than a 1 in 1375 chance that the effect is mimicked by a statistical fluctuation."

$$
1 / 1375=7.3 \times 10^{-4} \Rightarrow P(\text { No stat. fluct. })=99.93 \% \text { ! }
$$

April 2011, the 'bump' explodes

Discovery News, April 7:
This is a big week for particle physicists, and even they will be having many sleepless nights over the coming months trying to grasp what it all means.
That's what happens when physicists come forward, with observational evidence, of what they believe represents something we've never seen before. Even bigger than that: something we never even expected to see.

April 2011, the 'bump' explodes

Discovery News, April 7:
This is a big week for particle physicists, and even they will be having many sleepless nights over the coming months trying to grasp what it all means.
That's what happens when physicists come forward, with observational evidence, of what they believe represents something we've never seen before. Even bigger than that: something we never even expected to see.

It is what is known as a "three-sigma event," and this refers to the statistical certainty of a given result. In this case, this result has a 99.7 percent chance of being correct (and a 0.3 percent chance of being wrong)."

April 2011, the 'bump' explodes

Discovery News, April 7:
This is a big week for particle physicists, and even they will be having many sleepless nights over the coming months trying to grasp what it all means.
That's what happens when physicists come forward, with observational evidence, of what they believe represents something we've never seen before. Even bigger than that: something we never even expected to see.

It is what is known as a "three-sigma event," and this refers to the statistical certainty of a given result. In this case, this result has a 99.7 percent chance of being correct (and a 0.3 percent chance of being wrong)."

It seems we are understanding well, besides the fact of how 99.9\% becomes 99.7\%...

April 2011, the 'bump' explodes

Jon Butterworth's blob on the Guardian, April 9:
"The last and greatest breakthrough from a fantastic machine, or a false alarm on the frontiers of physics?

If the histograms and data are exactly right, the paper quotes a one-in-ten-thousand $(\mathbf{0} 0001)$ chance that this bump is a fluke."

April 2011, the 'bump' explodes

Jon Butterworth's blob on the Guardian, April 9:
"The last and greatest breakthrough from a fantastic machine, or a false alarm on the frontiers of physics?

If the histograms and data are exactly right, the paper quotes a one-in-ten-thousand (0.0001) chance that this bump is a fluke."
$\Rightarrow P($ Not Fluke $)=P($ "Genuine" $)=99.99 \%$

April 2011, the 'bump' explodes

Jon Butterworth's blob on the Guardian, April 9:
"The last and greatest breakthrough from a fantastic machine, or a false alarm on the frontiers of physics?

If the histograms and data are exactly right, the paper quotes a one-in-ten-thousand (0.0001) chance that this bump is a fluke."
$\Rightarrow P($ Not Fluke $)=P($ "Genuine" $)=99.99 \%$
But, at the end of the post:

1. "My money is on the false alarm at the moment,..."
2. "... but I would be very happy to lose it."
3. "And I reserve the right to change my mind rapidly as more data come in!"

April 2011, the 'bump' explodes

Jon Butterworth's blob on the Guardian, April 9:
"The last and greatest breakthrough from a fantastic machine, or a false alarm on the frontiers of physics?
...
If the histograms and data are exactly right, the paper quotes a one-in-ten-thousand (0.0001) chance that this bump is a fluke."
$\Rightarrow P($ Not Fluke $)=P($ "Genuine" $)=99.99 \%$
But, at the end of the post:

1. "My money is on the false alarm at the moment,..."
2. "... but I would be very happy to lose it."
3. "And I reserve the right to change my mind rapidly as more data come in!"

Assolutetly meaningful! (A part from the initial mismatch)

A materpieceof good reasoning

Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..."

A materpieceof good reasoning

Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..."
"I don't believe it!"

A materpieceof good reasoning

Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..."
"I don't believe it!"
2. "... but I would be very happy to lose it."
"What I wish" \neq "What I believe"

A materpieceof good reasoning

Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..."
"I don't believe it!"
2. ". . . but I would be very happy to lose it."
"What I wish" $=$ "What I believe"
3. "And I reserve the right to change my mind rapidly as more data come in!"
"Learning from the experience!"
\Rightarrow A physicist should never be dogmatic

A materpieceof good reasoning

Jon Butterworth's blob on the Guardian, April 9:

1. "My money is on the false alarm at the moment,..."
"I don't believe it!"
2. "... but I would be very happy to lose it."
"What I wish" \neq "What I believe"
3. "And I reserve the right to change my mind rapidly as more data come in!"
"Learning from the experience!"
\Rightarrow A physicist should never be dogmatic
But how must our convictions rationally change on the light of new experimental data? Is there a logical rule?

'Significant', but not believable!. . .

Jon Butterworth was not the only one to disbelieve the result. Indeed, the largest majority of physicists disbelieve it.

'Significant', but not believable!. . .

Jon Butterworth was not the only one to disbelieve the result. Indeed, the largest majority of physicists disbelieve it.
\Rightarrow More or less like in the better known case of
Opera's neutrinos faster than light. . . (6σ !)

'Significant', but not believable!. . .

Jon Butterworth was not the only one to disbelieve the result. Indeed, the largest majority of physicists disbelieve it.
\Rightarrow More or less like in the better known case of
Opera's neutrinos faster than light. . . (6σ !)
But, then, what the hell do "significances" mean?

'Significant', but not believable!...

Jon Butterworth was not the only one to disbelieve the result. Indeed, the largest majority of physicists disbelieve it.
\Rightarrow More or less like in the better known case of
Opera's neutrinos faster than light. . . (6σ !)

But, then, what the hell do "significances" mean?

"de Rujula's paradox":
"If you disbelieve every result presented as having a 3 sigma - or "equivalently" a 99.7\% chance - of being correct. . . You will turn out to be right 99.7% of the times."
(Alvaro de Rujula, private communication)

The cemetery of Physics

Alvaro de Rujula

Testing one hypothesis

- Basic Idea:
- let's start from a 'conventional' model [Standard Modell, rather 'extablished theory', etc:] \rightarrow " H_{0} " ("null hypothesis")

Testing one hypothesis

- Basic Idea:
- let's start from a 'conventional' model [Standard Modell, rather 'extablished theory', etc:]
\rightarrow " H_{0} " ("null hypothesis")
\Rightarrow search for violations of H_{0}

Testing one hypothesis

- Basic Idea:
- let's start from a 'conventional' model [Standard Modell, rather 'extablished theory', etc:]
\rightarrow " H_{0} " ("null hypothesis")
\Rightarrow search for violations of H_{0}
- Ideally
\rightarrow 'falsify' H_{0}

Testing one hypothesis

- Basic Idea:
- let's start from a 'conventional' model [Standard Modell, rather 'extablished theory', etc:]
\rightarrow " H_{0} " ("null hypothesis")
\Rightarrow search for violations of H_{0}
- Ideally
\rightarrow 'falsify' H_{0}
- In practice:
\rightarrow does it make sense?
\rightarrow how is it done?

Testing one hypothesis

- Basic Idea:
- let's start from a 'conventional' model [Standard Modell, rather 'extablished theory', etc:]
\rightarrow " H_{0} " ("null hypothesis")
\Rightarrow search for violations of H_{0}
- Ideally
\rightarrow 'falsify' H_{0}
- In practice:
\rightarrow does it make sense?
\rightarrow how is it done?
Let's review the practice and what is behind it \Rightarrow

Falsificationism

Usually referred to Popper and still considered by many as the key of scientific progress.

Falsificationism

Usually referred to Popper and still considered by many as the key of scientific progress.

$$
\text { if } C_{i} \nrightarrow E_{0} \text {, then } E_{0}^{\text {(mis) }} \nVdash C_{i}
$$

\Rightarrow Causes that cannot produce the observed effects are ruled out ('falsified').

Falsificationism

Usually referred to Popper
and still considered by many as
the key of scientific progress.

$$
\text { if } C_{i} \nrightarrow E_{0} \text {, then } E_{0}^{\text {(mis) }} \nVdash C_{i}
$$

\Rightarrow Causes that cannot produce the observed effects are ruled out ('falsified').
It seems OK - 'obvious'! - but it is indeed naïve for several aspects.

Falsification rule: to what is 'inspired'?

Proof by contradiction . . . 'extended'. . .

Falsification rule: to what is 'inspired'?

Proof by contradiction of classical, deductive logic:

- Assume that a hypothesis is true;
- Derive 'all' logical consequence;
- If (at least) one of the consequences is known to be false, then the hypothesis is rejected.

Proof by contradiction . . . 'extended'. . .

Falsification rule: to what is 'inspired'?

Proof by contradiction of classical, deductive logic:

- Assume that a hypothesis is true;
- Derive 'all' logical consequence;
- If (at least) one of the consequences is known to be false, then the hypothesis is rejected.

Popperian falsificationism
extends the reasoning to experimental sciences

Proof by contradiction . . . 'extended'. . .

Falsification rule: to what is 'inspired'?

Proof by contradiction of classical, deductive logic:

- Assume that a hypothesis is true;
- Derive 'all' logical consequence;
- If (at least) one of the consequences is known to be false, then the hypothesis is rejected.

Popperian falsificationism
extends the reasoning to experimental sciences

is this extension legitimate?

Falsificationism? OK, but. ..

- What shall we do of all hypotheses not yet falsified?
(Limbus? How should we progress?)

Falsificationism? OK, but. . .

- What shall we do of all hypotheses not yet falsified? (Limbus? How should we progress?)
- What to do if nothing of what can be observed is incompatible with the hypothesis (or with many hypotheses)?

Falsificationism? OK, but. . .

- What shall we do of all hypotheses not yet falsified?
(Limbus? How should we progress?)
- What to do if nothing of what can be observed is incompatible with the hypothesis (or with many hypotheses)?
E.g. H_{i} being a Gaussian $f\left(x \mid \mu_{i}, \sigma_{i}\right)$
\Rightarrow Given any pair or parameters $\left\{\mu_{i}, \sigma_{i}\right\}$ (i.e. $\forall H_{i}$), all values of x from $-\infty$ to $+\infty$ are possible.

Falsificationism? OK, but. . .

- What shall we do of all hypotheses not yet falsified? (Limbus? How should we progress?)
- What to do if nothing of what can be observed is incompatible with the hypothesis (or with many hypotheses)?
E.g. H_{i} being a Gaussian $f\left(x \mid \mu_{i}, \sigma_{i}\right)$
\Rightarrow Given any pair or parameters $\left\{\mu_{i}, \sigma_{i}\right\}$ (i.e. $\forall H_{i}$), all values of x from $-\infty$ to $+\infty$ are possible.
\Rightarrow Having observed any value of x, none of H_{i} can be, strictly speaking, falsified.

Falsificationism in action...

Obviously, this does not means that falsificationism never works,

Falsificationism in action...

Obviously, this does not means that falsificationism never works, as long as no stochastic processes are involved (randomness inherent to the physical processes, or due to 'errors' in measurement).

Falsificationism in action...

Obviously, this does not means that falsificationism never works, as long as no stochastic processes are involved (randomness inherent to the physical processes, or due to 'errors' in measurement).
\Rightarrow Practically never in the experimental sciences!

Falsificationism in action...

Obviously, this does not means that falsificationism never works, as long as no stochastic processes are involved (randomness inherent to the physical processes, or due to 'errors' in measurement).
Certainly it works against itself:

- Science proceeds, in practice, rather differently:

> The natural development of Science shows that researches are carried along the directions that seem more credibile (and hopefully fruitful) at a given moment. A behaviour "179 degrees or so out of phase from Popper's idea that we make progress by falsificating theories" (Wilczek, http: // arxiv. org/abs/ physics/0403115)

Falsificationism in action...

Obviously, this does not means that falsificationism never works, as long as no stochastic processes are involved (randomness inherent to the physical processes, or due to 'errors' in measurement).
Certainly it works against itself:
\Rightarrow logically speaking, falsificationism has to be considered ... falsified!

Falsificationism and statistics

...then, statisticians have invented the "hypothesis tests"

Falsificationism and statistics

...then, statisticians have invented the "hypothesis tests", in which the impossible is replaced by the improbable!

Falsificationism and statistics

...then, statisticians have invented the "hypothesis tests", in which the impossible is replaced by the improbable!
But from the impossible to the improbable there is not just a question of quantity, but a question of quality.

Falsificationism and statistics

...then, statisticians have invented the "hypothesis tests", in which the impossible is replaced by the improbable!
But from the impossible to the improbable there is not just a question of quantity, but a question of quality.
This mechanism, logically flawed, is particularly dangerous because is deeply rooted in most scientists, due to education and custom, although not supported by logic.
\Rightarrow Basically responsible of all fake claims of discoveries in the past decades.
[I am particularly worried about claims concerning our health, or the status of the planet, of which I have no control of the experimental data.]

In summary

A) if $C_{i} \nrightarrow E$, and we observe E $\Rightarrow C_{i}$ is impossible ('false')

In summary

A) if $C_{i} \nrightarrow E$, and we observe E
$\Rightarrow C_{i}$ is impossible ('false')
B) if $C_{i} \xrightarrow[\text { small probability }]{ } E$, and we observe E
$\Rightarrow C_{i}$ has small probability to be true "most likely false"

In summary

A) if $C_{i} \nrightarrow E$, and we observe E
$\Rightarrow C_{i}$ is impossible ('false')
B) if $C_{i} \xrightarrow[\text { small probability }]{ } E$, and we observe E
$\Rightarrow C_{i}$ has small probability to be true "most likely false"

In summary

A) if $C_{i} \nrightarrow E$, and we observe E
$\Rightarrow C_{i}$ is impossible ('false')
B) if $C_{i} \xrightarrow[\text { small probability }]{ } E$, and we observe E NO
$\Rightarrow C_{i}$ has small probability to be true
"most likely false"

But it is behind the rational behind the statistical hypothesis tests!

Example

An Italian citizen is chosen at random and sent to take an AIDS test (test is not perfect, as it is the case in practice).
Simplified model:

$$
\begin{aligned}
& P(\text { Pos } \mid \text { HIV })=100 \% \\
& P(\text { Pos } \mid \overline{\mathrm{HIV}})=0.2 \% \\
& P(\mathrm{Neg} \mid \overline{\mathrm{HIV}})=99.8 \% \\
& H_{1}=\text { 'HIV' (Infected) } \\
& E_{1}=\text { Positive } \\
& H_{2}=\text { 'HIV' }^{\prime} \text { (Not infected) } \\
& E_{2}=\text { Negative }
\end{aligned}
$$

Example

An Italian citizen is chosen at random and sent to take an AIDS test (test is not perfect, as it is the case in practice). Simplified model:

$$
\begin{aligned}
& P(\mathrm{Pos} \mid \mathrm{HIV})=100 \% \\
& P(\mathrm{Pos} \mid \mathrm{HIV})=0.2 \% \\
& P(\mathrm{Neg} \mid \overline{\mathrm{HIV}})=99.8 \% \\
&\left.H_{1}=\text { 'HIV' (Infected }\right) \\
& H_{2}={ }^{\prime} \text { 'HIV' (Not infected) } \\
& E_{1}=\text { Positive }
\end{aligned}
$$

Example

An Italian citizen is chosen at random and sent to take an AIDS test (test is not perfect, as it is the case in practice). Simplified model:

$$
\begin{aligned}
& P(\mathrm{Pos} \mid \mathrm{HIV})=100 \% \\
& P(\mathrm{Pos} \mid \overline{\mathrm{HIV}})=0.2 \% \\
& P(\mathrm{Neg} \mid \overline{\mathrm{HIV}})=99.8 \% \\
& H_{1}=\text { 'HIV' (Infected) } \\
& H_{2}={ }^{\prime} \overline{\mathrm{HIV}} \text { ' (Not infected) } \\
& E_{1}=\text { Positive }
\end{aligned}
$$

$$
\text { Result: } \Rightarrow \text { Positive }
$$

Example

An Italian citizen is chosen at random and sent to take an AIDS test (test is not perfect, as it is the case in practice).
Simplified model:

$$
\begin{aligned}
P(\text { Pos } \mid \mathrm{HIV}) & =100 \% \\
P(\mathrm{Pos} \mid \overline{\mathrm{HIV}}) & =0.2 \% \\
P(\mathrm{Neg} \mid \overline{\mathrm{HIV}}) & =99.8 \% \\
\left.? \mathrm{H}_{1}=\text { 'HIV' (Infected }\right) & \\
? \mathrm{H}_{2}={ }^{\prime} \overline{\mathrm{HIV}} \text { ' (Not infected) } & E_{2}=\text { Nositive }
\end{aligned}
$$

Result: \Rightarrow Positive HIV or not HIV?

What shall we conclude?

Being $P(\operatorname{Pos} \mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"?

What shall we conclude?

Being $P(\operatorname{Pos} \mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive',
can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV" ?

What shall we conclude?

Being $P($ Pos $\mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"?

What shall we conclude?

Being $P(\operatorname{Pos} \mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it was practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"
- "Hypothesis $H_{1}=$ Healthy is ruled out with 99.8% C.L."

What shall we conclude?

Being $P(\operatorname{Pos} \mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive', can we say

- "It is practically impossible that the person is healthy, since it tras practically impossible that an healthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"
- Hypothesis $H_{1}=$ Healthy is ruled out with 99.8% C.L."

Instead, $\quad P($ HIV \mid Pos, randomly chosen Italian $) \approx 45 \%$ Think about it (a crucial information is missing!)

What shall we conclude?

Being $P(\operatorname{Pos} \mid \overline{\mathrm{HIV}})=0.2 \%$ and having observed 'Positive',
can we say

- "It is practically impossible that the person is healthy, since it wras practically impossible that an heatthy person would result positive"
- "There is only 0.2% probability that the person has no HIV"
- "We are 99.8% confident that the person is infected"
- "Hypothesis $H_{1}=$ Healthy is ruled out with 99.8\% C.L."

$P(A \mid B) \leftrightarrow P(B \mid A)$

Pay attention no to arbitrary revert conditional probabilities:

$$
\text { In general } P(A \mid B) \neq P(B \mid A)
$$

$P(A \mid B) \leftrightarrow P(B \mid A)$

Pay attention no to arbitrary revert conditional probabilities:

$$
\text { In general } P(A \mid B) \neq P(B \mid A)
$$

- $P($ Positive $\mid \overline{H I V}) \neq P(\overline{H I V} \mid$ Positive $)$

$P(A \mid B) \leftrightarrow P(B \mid A)$

Pay attention no to arbitrary revert conditional probabilities:

$$
\text { In general } P(A \mid B) \neq P(B \mid A)
$$

- $P($ Positive $\mid \overline{H I V}) \neq P(\overline{H I V} \mid$ Positive $)$
- $P($ Win \mid Play $) \neq P($ Play \mid Win $) \quad$ [Lotto]

$P(A \mid B) \leftrightarrow P(B \mid A)$

Pay attention no to arbitrary revert conditional probabilities:

$$
\text { In general } P(A \mid B) \neq P(B \mid A)
$$

- $P($ Positive $\mid \overline{H I V}) \neq P(\overline{H I V} \mid$ Positive $)$
- $P($ Win \mid Play $) \neq P($ Play \mid Win $) \quad[$ Lotto]
- $P($ Pregnant \mid Woman $) \neq P($ Woman \mid Pregnant $)$

$P(A \mid B) \leftrightarrow P(B \mid A)$

Pay attention no to arbitrary revert conditional probabilities:

$$
\text { In general } P(A \mid B) \neq P(B \mid A)
$$

- $P($ Positive $\mid \overline{H I V}) \neq P(\overline{H I V} \mid$ Positive $)$
- $P($ Win \mid Play $) \neq P($ Play \mid Win $) \quad$ [Lotto]
- $P($ Pregnant \mid Woman $) \neq P($ Woman \mid Pregnant $)$

In particular

- A cause might produce a given effect with very low probability, and nevertheless could be the most probable cause of that effect, often the only one!

'Low probability’ events

Tipical values of statistical practice to reject a hypothesis are 5%, $1 \%, \ldots$ (see 'AIDS test')

'Low probability’ events

Tipical values of statistical practice to reject a hypothesis are 5%, $1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

'Low probability’ events

Tipical values of statistical practice to reject a hypothesis are 5%, $1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.

'Low probability' events

Tipical values of statistical practice to reject a hypothesis are 5%, $1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.
\rightarrow What was the probability to give exactly that number?:

$$
\begin{aligned}
P\left(X=3.1416 \mid H_{0}\right) & =\int_{3.14155}^{3.14165} f_{\mathcal{G}}(x \mid \mu, \sigma) d x \\
& \approx f_{\mathcal{G}}(3.1416 \mid \mu, \sigma) \times \Delta x \\
& \approx f_{\mathcal{G}}(3.1416 \mid \mu, \sigma) \times 0.0001 \\
& \approx 39 \times 10^{-6}
\end{aligned}
$$

'Low probability’ events

Tipical values of statistical practice to reject a hypothesis are 5%, $1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.
\rightarrow What is the probability that X comes from H_{0} ?

'Low probability’ events

Tipical values of statistical practice to reject a hypothesis are 5%, $1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.
\rightarrow What is the probability that X comes from H_{0} ?

- Certainly NOT $\approx 39 \times 10^{-6}$;

'Low probability' events

Tipical values of statistical practice to reject a hypothesis are 5%, $1 \%, \ldots$ (see 'AIDS test')

BUT the greatest majority of the events of interest have very low probability (before occurring!).

For example, imagine a Gaussian random generator (H_{0}, with $\mu=3, \sigma=1$) gives us $X=3.1416$.
\rightarrow What is the probability that X comes from H_{0} ?

- Certainly NOT $\approx 39 \times 10^{-6}$;
- Indeed, it is exactly 1 , since H_{0} is the only cause which can produce that effect:

$$
\begin{aligned}
& P\left(X=3.1416 \mid H_{0}\right) \approx 39 \times 10^{-6} \\
& P\left(H_{0} \mid X=3.1416\right)=1
\end{aligned}
$$

Exercises with R

How to calculate the probability of the rounded value of an outcome (nd):

```
nd=4; m=3; s=1;
(x=round(rnorm(1,m,s),nd)); dnorm(x,m,s)*10-nd
```


Exercises with R

How to calculate the probability of the rounded value of an outcome (nd):

```
nd=4; m=3; s=1;
(x=round(rnorm(1,m,s),nd)); dnorm(x,m,s)*10-nd
```

- Repeat the last line to get a feeling.

Exercises with R

How to calculate the probability of the rounded value of an outcome (nd):

```
nd=4; m=3; s=1;
(x=round(rnorm(1,m,s),nd)); dnorm(x,m,s)*10-nd
```

- Repeat the last line to get a feeling.
- Maximum value: $\frac{10^{-n d}}{\sqrt{2 \pi \sigma}}\left(\rightarrow \approx 4^{-5}\right.$ for $\left.n d=4, \sigma=1\right)$.

Exercises with R

How to calculate the probability of the rounded value of an outcome (nd):

```
nd=4; m=3; s=1;
(x=round(rnorm(1,m,s),nd)); dnorm(x,m,s)*10-nd
```

- Repeat the last line to get a feeling.
- Maximum value: $\frac{10^{-n d}}{\sqrt{2 \pi \sigma}}\left(\rightarrow \approx 4^{-5}\right.$ for $\left.n d=4, \sigma=1\right)$.

Histogram of probabilities:

```
m=3; s=1; nd=4; n=100000
x=round(rnorm(n,m,s),nd)
log.p=log10(dnorm(x,m,s)*10^-nd)
hist(log.p, nc=100, col='cyan',
    xlim=c(min(log.p), max(log.p)*0.8) )
```


Probability of something else...

> Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'technical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'technical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...
but, instead of repent, throw everything away and finally start to read Laplace (yes, 'our' Laplace!)
'he' makes a new invention:

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'technical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...
but, instead of repent, throw everything away and finally start to read Laplace (yes, 'our' Laplace!)
'he' makes a new invention:
\rightarrow what matters is not the probability of the X, but rather the probability of X or of any other less probable number (or a number farther than X from the expected value - the story is a bit longer. . .):

$$
P(X \geq 3.1416)=\int_{3.14155}^{+\infty} f_{\mathcal{G}}(x \mid \mu, \sigma) d x \approx 44 \%
$$

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'technical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...
but, instead of repent, throw everything away and finally start to read Laplace (yes, 'our' Laplace!)
'he' makes a new invention:
\rightarrow what matters is not the probability of the X, but rather the probability of X or of any other less probable number (or a number farther than X from the expected value - the story is a bit longer. . .):

$$
P(X \geq 3.1416)\left[=P\left(X \geq x_{o b s}\right)\right] \Rightarrow \text { 'p-value' }
$$

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'technical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...
\Rightarrow Magically the result 'becomes' rather probable!
Why, we, silly, worried about it?
\Rightarrow The statisticians are happy...

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'technical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...
\Rightarrow Magically the result 'becomes' rather probable! Why, we, silly, worried about it?
\Rightarrow The statisticians are happy... scientists and general public cheated...

Probability of something else...

Besides the fact that the reasoning based only on the probability of the event given the cause is logically flawed, the 'technical issue' of low probability events which would lead to reject any hypothesis forces the statistician to rethink the question...
\Rightarrow Magically the result 'becomes' rather probable! Why, we, silly, worried about it?
\Rightarrow The statisticians are happy... scientists and general public cheated. . .
\Rightarrow From the logical point of view the situation has worsened: \rightarrow our conclusions do not depend on what we have observed, but also from rarer events not actually observed!

Comparing three hypotheses

Which hypothesis is favored by the experimental observation x_{m} ?

Comparing three hypotheses

Which hypothesis is favored by the experimental observation x_{m} ?

Even if $P\left(x_{m} \mid H_{i}\right) \rightarrow 0$ (it depends on resolution)

Comparing three hypotheses

Which hypothesis is favored by the experimental observation x_{m} ?

In particular, the hypothesis H_{2} is (truly) falsified (impossible!), although it yields the largest ' p -value'

Comparing three hypotheses

Which hypothesis is favored by the experimental observation x_{m} ?

In particular, the hypothesis H_{2} is (truly) falsified (impossible!), although it yields the largest 'p-value', or 'probability of the tail(s)'

An irrilevant experiment

Which hypothesis is favored by the experimental observation x_{m} ?

An irrilevant experiment

Which hypothesis is favored by the experimental observation x_{m} ?

\Rightarrow The experimental result is irrelevant!

An irrilevant experiment

Which hypothesis is favored by the experimental observation x_{m} ?

$$
\begin{aligned}
& P\left(x_{m} \mid H_{3}\right)=P\left(x_{m} \mid H_{4}\right)=P\left(x_{m} \mid H_{5}\right)=P\left(x_{m} \mid H_{6}\right)
\end{aligned}
$$

\Rightarrow The experimental result is irrelevant!
\rightarrow we mantain our opinions about H_{i}

An irrilevant experiment

Which hypothesis is favored by the experimental observation x_{m} ?

$$
P\left(x_{m} \mid H_{3}\right)=P\left(x_{m} \mid H_{4}\right)=P\left(x_{m} \mid H_{5}\right)=P\left(x_{m} \mid H_{6}\right)
$$

\Rightarrow The experimental result is irrelevant!
\Rightarrow...no matter what the different the p-values are!

Which p-value?...

'p-value' $=$ 'probability of the tail(s)'

Which p-value?...

' p-value' $=$ 'probability of the tail (s) '

Of what?

Which p-value?...

' p-value' $=$ 'probability of the tail (s) '

Of what?

\rightarrow the test variable (' θ ') is absolutely arbitrary:

$$
\begin{aligned}
\theta & =\theta(\mathbf{x}) \\
& \rightarrow f(\theta) \quad[\text { p.d. } f]
\end{aligned}
$$

Experiment: $\rightarrow \theta_{\text {mis }}=\theta\left(\mathbf{x}_{\text {mis }}\right)$

$$
\text { p-value }=P\left(\theta \geq \theta_{\text {mis }}\right) \quad \text { ('one tail') }
$$

Which p-value?...

Which p-value?...

- far from exhaustive list,

Which p-value?...

- far from exhaustive list,
- with arbitrary variants:

Which p-value?...

- far from exhaustive list,
- with arbitrary variants:
\Rightarrow practitioners chose the one that provide the result they like better:
\rightarrow like if you go around until "someone agrees with you"

Which p-value?...

- far from exhaustive list,
- with arbitrary variants:
\Rightarrow practitioners chose the one that provide the result they like better:
\rightarrow like if you go around until "someone agrees with you"
- personal 'golden rule':
"the more exotic is the name of the test, the less I believe the result", because I'm pretty shure that several 'normal' tests have been descarded in the meanwhile...

Or look around, searching for 'significance’

If changing the test does not help, change hypotheses...

Or look around, searching for 'significance’

If changing the test does not help, change hypotheses...

Or look around, searching for 'significance’

If changing the test does not help, change hypotheses...

Or look around, searching for'significance’

If changing the test does not help, change hypotheses...

P-hacking ("p-value hacking")

The 'science' of inventing significant results...

p-hacking, or cheating on a p -value

By arthur charpentier

Share

(This article was first published on Freakonometrics * R-english, and kindly contributed to R-bloggers)

Yesterday evening, I discovered some interesting slides on False-Positives, p-Hacking, Statistical Power, and Evidential Value, via @UCBITSS 's post on Twitter. More precisely, there was this slide on how cheating (because that's basically what it is) to get a 'good' model (by targeting the p-value)

1. Stop collecting data once $p<.05$
2. Analyze many measures, but report only those with $p<.05$.
3. Collect and analyze many conditions, but only report those with $p<.05$.
4. Use covariates to get $p<.05$.
5. Exclude participants to get $p<.05$.
6. Transform the data to get $p<.05$.
http://www.r-bloggers.com/p-hacking-or-cheating-on-a-p-value/

- Google for "p-hacking"

$\chi^{2} \ldots$ the mother of all p-values

Theory Vs experiment (bars: expectation uncertainty):

- True value of y : 5 , independently of x (a.u.);
- Gaussian instrumental error with $\sigma=1$.

Probability of the data sample

$P=8.22 \times 10^{-33}$ is the probability of the 'configuration' of experimental points:

- obtained multiplying the probability of each point (independent measurements):

$$
\begin{gathered}
P=\prod_{i} P_{i} \\
P_{i}=\int_{y_{m_{i}}-\Delta y / 2}^{y_{m_{i}}+\Delta y / 2} f(y) d y
\end{gathered}
$$

- as seen, P_{i} depends on the 'resolution' Δy (instrumental 'discretization'):

$$
\rightarrow \text { we use } \quad \Delta y=\frac{1}{10} \sigma
$$

'Distance' Experiment-theory: χ^{2}

The costruction of the χ^{2} is very popular (usually in first lab. courses - 'Fisichetta'):

$$
\begin{array}{rlrl}
\chi^{2} & =\sum_{i}\left(\frac{y_{m_{i}}-y_{t h_{i}}}{\sigma_{i}}\right)^{2} & & \\
& \rightarrow \sum_{i}\left(\frac{y_{m_{i}}-y_{0}}{\sigma}\right)^{2} & & \\
\chi^{2} & \sim \Gamma(\nu / 2,1 / 2) & & {[\rightarrow \nu=20]} \\
\mathrm{E}\left[\chi^{2}\right] & =\nu & & {[\rightarrow 20]} \\
\operatorname{Var}\left[\chi^{2}\right] & =2 \nu & {[\rightarrow 40]} \\
\operatorname{Std}\left[\chi^{2}\right] & =\sqrt{2 \nu} & {[\rightarrow 18]} \\
\operatorname{Mode}\left[\chi^{2}\right] & = \begin{cases}0 & \text { if } \nu \leq 2 \\
\nu-2 & \text { if } \nu>2\end{cases} & & \\
\Rightarrow & \chi^{2}=20 \pm 6 &
\end{array}
$$

Our expectations about χ^{2}

Some examples

In the average.
(but someone could see the points forming a 'constellation'...)

Some examples

Too good?

Some examples

$\chi^{2}=52.6$, with a p-value $=0.93 \times 10^{-4}$
At limit?

Some examples

$\chi^{2}=52.6$, with a p-value $=0.93 \times 10^{-4}$
At limit? Just come out at the first time (9 Oct. 2012, 13:01) while(chi2.ym() < 38) source("chi2_1.R")

Some examples

Note: $\chi_{\text {mis }}^{2} 52.6$ is 5.1σ from its expectation $\left[\frac{52.6-20}{\sqrt{40}}=5.1\right]$

Some examples

Note: $\chi_{\text {mis }}^{2} 52.6$ is 5.1σ from its expectation $\left[\frac{52.6-20}{\sqrt{40}}=5.1\right]$, but the p -value is comunicated as " 3.7σ ", referring to the probability of the tail above 3.7σ of an 'equivalent Gaussian'.

Some examples

Note: $\chi_{\text {mis }}^{2} 52.6$ is 5.1σ from its expectation $\left[\frac{52.6-20}{\sqrt{40}}=5.1\right]$, but the p -value is comunicated as " 3.7σ ", referring to the probability of the tail above 3.7σ of an 'equivalent Gaussian'. (as if there were already not enough confusion...)

The art of χ^{2}

Sometimes the χ^{2} test does not give "the wished result"

Then it is calculated in the 'suspicious region'

The art of χ^{2}

Sometimes the χ^{2} test does not give "the wished result"

Then it is calculated in the 'suspicious region'
\Rightarrow If we add the two side points, χ^{2}
becomes 22.2.
\Rightarrow But with 5 points we had got a p-value of 5×10^{-4}

p-value: what they are

p-value:

- Probability of the tail(s) of a 'test variable' (a "statistic"):

$$
\begin{aligned}
P\left(\theta \geq \theta_{\text {mis }}\right) & =\int_{\theta_{\text {mis }}}^{\infty} f\left(\theta \mid H_{0}\right) d \theta \\
P\left[\left(\theta \geq \theta_{\text {mis }}\right) \cap\left(\theta \leq\left(\theta^{c}\right)_{\text {mis }}\right)\right] & =1-\int_{\left(\theta^{c}\right)_{\text {mis }}}^{\theta_{\text {mis }}} f\left(\theta \mid H_{0}\right) d \theta
\end{aligned}
$$

- θ is an arbitrary function of the data.
- ... and often of a subsample of the data.
- $f\left(\theta \mid H_{0}\right)$ is obtained 'somehow', analitically, numerically, or by Monte Carlo methods.

p-value: what they are

p-value:

- Probability of the tail(s) of a 'test variable' (a "statistic"):

$$
\begin{aligned}
P\left(\theta \geq \theta_{\text {mis }}\right) & =\int_{\theta_{\text {mis }}}^{\infty} f\left(\theta \mid H_{0}\right) d \theta \\
P\left[\left(\theta \geq \theta_{\text {mis }}\right) \cap\left(\theta \leq\left(\theta^{c}\right)_{\text {mis }}\right)\right] & =1-\int_{\left(\theta^{c}\right)_{\text {mis }}}^{\theta_{\text {mis }}} f\left(\theta \mid H_{0}\right) d \theta
\end{aligned}
$$

- θ is an arbitrary function of the data.
- ... and often of a subsample of the data.
- $f\left(\theta \mid H_{0}\right)$ is obtained 'somehow', analitically, numerically, or by Monte Carlo methods.

What they are not \Rightarrow

Example: Has the student made a mistake?

Homework: calculate the average of 300 random numbers, uniformly distributed between 0 and 1 .

Example: Has the student made a mistake?

Homework: calculate the average of 300 random numbers, uniformly distributed between 0 and 1 .

- Teacher expectation:

$$
\begin{aligned}
\mathrm{E}\left[\bar{X}_{300}\right] & =\frac{1}{2} \\
\sigma\left[\bar{X}_{300}\right] & =\frac{1}{\sqrt{12}} \cdot \frac{1}{\sqrt{300}}=0.017
\end{aligned}
$$

Example: Has the student made a mistake?

Homework: calculate the average of 300 random numbers, uniformly distributed between 0 and 1 .

- Teacher expectation:

$$
\begin{aligned}
\mathrm{E}\left[\bar{X}_{300}\right] & =\frac{1}{2} \\
\sigma\left[\bar{X}_{300}\right] & =\frac{1}{\sqrt{12}} \cdot \frac{1}{\sqrt{300}}=0.017
\end{aligned}
$$

- 99\% probability interval

$$
P\left(0.456 \leq \bar{X}_{300} \leq 0.544\right)=99 \% .
$$

Example: Has the student made a mistake?

Homework: calculate the average of 300 random numbers, uniformly distributed between 0 and 1 .

- Teacher expectation:

$$
\begin{aligned}
\mathrm{E}\left[\bar{X}_{300}\right] & =\frac{1}{2} \\
\sigma\left[\bar{X}_{300}\right] & =\frac{1}{\sqrt{12}} \cdot \frac{1}{\sqrt{300}}=0.017
\end{aligned}
$$

- 99\% probability interval

$$
P\left(0.456 \leq \bar{X}_{300} \leq 0.544\right)=99 \% .
$$

- Student gets a value outside the interval, e.g. $\bar{x}=0.550$.
\Rightarrow Has the student made a mistake?

Example: Has the student made a mistake?

Conventional statistician solution:
\Rightarrow test the hypothesis $H_{0}=$ 'no mistakes'

Example: Has the student made a mistake?

Conventional statistician solution:
\Rightarrow test the hypothesis $H_{0}=$ 'no mistakes'

- Test variable θ is \bar{X}_{300}.
- Acceptance interval $\left[\theta_{1}, \theta_{2}\right]$ is $[0.456,0.544]$. We are 99% confident that \bar{X}_{300} will fall inside it: $\rightarrow \alpha=1 \%$.

Example: Has the student made a mistake?

Conventional statistician solution:
\Rightarrow test the hypothesis $H_{0}=$ 'no mistakes'

- Test variable θ is \bar{X}_{300}.
- Acceptance interval $\left[\theta_{1}, \theta_{2}\right]$ is [$\left.0.456,0.544\right]$. We are 99% confident that \bar{X}_{300} will fall inside it:
$\rightarrow \alpha=1 \%$.
- $\bar{x}=0.550$ lies outside the acceptance interval
\Rightarrow Hypothesis H_{0} is rejected at 1% significance.

Example: Has the student made a mistake?

Conventional statistician solution:
\Rightarrow test the hypothesis $H_{0}=$ 'no mistakes'

- Test variable θ is \bar{X}_{300}.
- Acceptance interval $\left[\theta_{1}, \theta_{2}\right]$ is [$\left.0.456,0.544\right]$. We are 99% confident that \bar{X}_{300} will fall inside it:
$\rightarrow \alpha=1 \%$.
- $\bar{x}=0.550$ lies outside the acceptance interval
\Rightarrow Hypothesis H_{0} is rejected at 1% significance.
\Rightarrow What does it mean?

Meaning of the hypothesis test

Conclusion from test:
"the hypothesis $H_{\circ}=$ 'no mistakes' is rejected at the 1% level of significance".

Meaning of the hypothesis test

Conclusion from test:
"the hypothesis $H_{\circ}=$ 'no mistakes' is rejected at the 1% level of significance".
What does it mean?
"there is only a 1% probability that the average falls outside the selected interval, if the calculations were done correctly".

Meaning of the hypothesis test

Conclusion from test:
"the hypothesis $H_{\circ}=$ 'no mistakes' is rejected at the 1% level of significance".
What does it mean?
"there is only a 1% probability that the average falls outside the selected interval, if the calculations were done correctly".
So what?

Meaning of the hypothesis test

Conclusion from test:
"the hypothesis $H_{\circ}=$ 'no mistakes' is rejected at the 1% level of significance".
What does it mean?
"there is only a 1% probability that the average falls outside the selected interval, if the calculations were done correctly".
So what?

- It does not reply our natural question, i.e. that concerning the probability of mistake - quite impolite, by the way.
- The statement sounds as if one would be 99% sure that the student has made a mistake! (Mostly interpreted in this way).
\Rightarrow Highly misleading!

Something is missing in the reasoning

If you ask the students (before they take a standard course in hypothesis tests) you will realize of a crucial ingredient extraneous to the logic of hypothesis tests:

Something is missing in the reasoning

If you ask the students (before they take a standard course in hypothesis tests) you will realize of a crucial ingredient extraneous to the logic of hypothesis tests:
"It all depends on whom has made the calculation!"

Something is missing in the reasoning

If you ask the students (before they take a standard course in hypothesis tests) you will realize of a crucial ingredient extraneous to the logic of hypothesis tests:

"It all depends on whom has made the calculation!"

In fact, if the calculation was done by a well-tested program, the probability of mistake would be zero.
And students know rather well their tendency to do or not mistakes.

'Something is missing': another example

The value $x=3.01$ is extracted from a Gaussian random number generator having $\mu=0$ and $\sigma=1$.

'Something is missing': another example

The value $x=3.01$ is extracted from a Gaussian random number generator having $\mu=0$ and $\sigma=1$. It is well known that $P(|X|>3)=0.27 \%$, but

'Something is missing': another example

The value $x=3.01$ is extracted from a Gaussian random number generator having $\mu=0$ and $\sigma=1$.
It is well known that $P(|X|>3)=0.27 \%$, but
we cannot say

- "the value X has 0.27% probability of coming from that generator"

'Something is missing': another example

The value $x=3.01$ is extracted from a Gaussian random number generator having $\mu=0$ and $\sigma=1$.
It is well known that $P(|X|>3)=0.27 \%$, but
we cannot say

- "the value X has 0.27% probability of coming from that generator"
- "the probability that the observation is a statistical fluctuation is 0.27% "

'Something is missing': another example

The value $x=3.01$ is extracted from a Gaussian random number generator having $\mu=0$ and $\sigma=1$.
It is well known that $P(|X|>3)=0.27 \%$, but
we cannot say

- "the value X has 0.27% probability of coming from that generator"
- "the probability that the observation is a statistical fluctuation is 0.27% "
\Rightarrow the value comes with 100% probability from that generator!

'Something is missing': another example

The value $x=3.01$ is extracted from a Gaussian random number generator having $\mu=0$ and $\sigma=1$.
It is well known that $P(|X|>3)=0.27 \%$, but
we cannot say

- "the value X has 0.27% probability of coming from that generator"
- "the probability that the observation is a statistical fluctuation is 0.27% "
\Rightarrow the value comes with 100% probability from that generator!
\Rightarrow it is at 100% a statistical fluctuation

'Something is missing': another example

The value $x=3.01$ is extracted from a Gaussian random number generator having $\mu=0$ and $\sigma=1$.
It is well known that $P(|X|>3)=0.27 \%$, but
we cannot say

- "the value X has 0.27% probability of coming from that generator"
- "the probability that the observation is a statistical fluctuation is 0.27% "
\Rightarrow the value comes with 100% probability from that generator!
\Rightarrow it is at 100% a statistical fluctuation
Logical bug of the reasoning:
\Rightarrow One cannot tell how much one is confident in generator A only if another generator B is not taken into account.

'Something is missing': another example

The value $x=3.01$ is extracted from a Gaussian random number generator having $\mu=0$ and $\sigma=1$.
It is well known that $P(|X|>3)=0.27 \%$, but we cannot say

- "the value X has 0.27% probability of coming from that generator"
- "the probability that the observation is a statistical fluctuation is 0.27% "
\Rightarrow the value comes with 100% probability from that generator!
\Rightarrow it is at 100% a statistical fluctuation
Logical bug of the reasoning:
\Rightarrow One cannot tell how much one is confident in generator A only if another generator B is not taken into account.
\Rightarrow This is the original sin of conventional hypothesis test methods

Well posed problem

Choose among H_{1}, H_{2} and H_{3} having observed $x=3$:

Well posed problem

Choose among H_{1}, H_{2} and H_{3} having observed $x=3$:

The statistics-uneducated student would suggest:

- our preference should depend on how likely each model might yield $x=3$

Well posed problem

Choose among H_{1}, H_{2} and H_{3} having observed $x=3$:

The statistics-uneducated student would suggest:

- our preference should depend on how likely each model might yield $x=3$
- ... but perhaps also on 'how reasonable' each model is, given the physical situation under study

Well posed problem

Choose among H_{1}, H_{2} and H_{3} having observed $x=3$:

The statistics-uneducated student would suggest:

- our preference should depend on how likely each model might yield $x=3$
- ... but perhaps also on 'how reasonable' each model is, given the physical situation under study
\Rightarrow Right!

Objections

"These are chosen academic examples."

Objections

"These are chosen academic examples."
\Rightarrow logic is logic!

Objections

"These are chosen academic examples."
\Rightarrow logic is logic!
How can we use a reasoning in frontier physics if it fails in simple cases?
\Rightarrow All fake claims of discoveries are due to the criticized reasoning (examples in a while \longrightarrow)

Objections

"These are chosen academic examples."
\Rightarrow logic is logic!
How can we use a reasoning in frontier physics if it fails in simple cases?
\Rightarrow All fake claims of discoveries are due to the criticized reasoning (examples in a while \longrightarrow)
"Hypotheses tests are well proved to work"

Objections

"These are chosen academic examples."
\Rightarrow logic is logic!
How can we use a reasoning in frontier physics if it fails in simple cases?
\Rightarrow All fake claims of discoveries are due to the criticized reasoning (examples in a while \longrightarrow)
"Hypotheses tests are well proved to work"
Yes and not...
\Rightarrow They 'often work' due to reasons external to their logic, but which are not always satisfied, especially in the frontier cases that mostly concern us.
\longrightarrow we shall come back to this point

Examples from particle physics

Many, too many, unfortunatly...
I case I lived in first person was that of the (in)famous HERA events
\Rightarrow see slides at
http://www.roma1.infn.it/~dagos/cernAT05_scanned/

Examples from particle physics

Many, too many, unfortunatly...
I case I lived in first person was that of the (in)famous HERA events
\Rightarrow see slides at
http://www.roma1.infn.it/~dagos/cernAT05_scanned/
(And the logical error happens not only in the case of fake discoveries, but also when a highly expected particle is finally found - wait for a while...)

p-value: what they are not

- What we wanted:
- falsify the hypothesis H_{0} :
\Rightarrow impossible, from the logical point of view (as long as there are stochastic effects).

p-value: what they are not

- What we wanted:
- falsify the hypothesis H_{0} :
\Rightarrow impossible, from the logical point of view (as long as there are stochastic effects).
- Therefore we content ourself with
- updating our confidence about H_{0}
in the light of the experimental data:

$$
P\left(H_{0} \mid \text { data }\right)
$$

p-value: what they are not

- What we wanted:
- falsify the hypothesis H_{0} :
\Rightarrow impossible, from the logical point of view (as long as there are stochastic effects).
- Therefore we content ourself with
- updating our confidence about H_{0} in the light of the experimental data:

$$
P\left(H_{0} \mid \text { data }\right)
$$

\Rightarrow BUT the p-value do not provide this:

$$
P\left(\theta \geq \theta_{\text {mis }} \mid H_{0}\right) \Longleftrightarrow P\left(H_{0} \mid \theta_{\text {mis }}\right)
$$

\Rightarrow Although they are erroneously confused with this!

p-value: what they are not

- What we wanted:
- falsify the hypothesis H_{0} :
\Rightarrow impossible, from the logical point of view (as long as there are stochastic effects).
- Therefore we content ourself with
- updating our confidence about H_{0} in the light of the experimental data:

$$
P\left(H_{0} \mid \text { data }\right)
$$

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderstandings

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderstandings

1. The p-value is not the probability that the null hypothesis is true.

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderstandings

1. The p-value is not the probability that the null hypothesis is true. In fact, frequentist statistics does not, and cannot, attach probabilities to hypotheses. ...

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderstandings

1. The p-value is not the probability that the null hypothesis is true. In fact, frequentist statistics does not, and cannot, attach probabilities to hypotheses. ...
2. The p-value is not the probability that a finding is "merely a fluke."...

Misunderstandings p-values

http://en.wikipedia.org/wiki/P-value\#Misunderstandings

1. The p-value is not the probability that the null hypothesis is true. In fact, frequentist statistics does not, and cannot, attach probabilities to hypotheses. ...
2. The p-value is not the probability that a finding is "merely a fluke."...
3. The p-value is not the probability of falsely rejecting the null hypothesis.
4. ...

The 5 sigma Higgs!

July 2012

- "The data confirm the 5 sigma threshold, i.e. a probability of discovery of 99.99994% " (one of the many claims you could read on the web).
- "I dati confermano la soglia dei 5 sigma, vale a dire una probabilità di scoperta pari al 99,99994 per cento" spiega Gian Francesco Giudice, teorico del CERN (corriere.it, 3 luglio)

The 5 sigma Higgs!

July 2012

- "The data confirm the 5 sigma threshold, i.e. a probability of discovery of 99.99994% " (one of the many claims you could read on the web).
- "I dati confermano la soglia dei 5 sigma, vale a dire una probabilità di scoperta pari al 99,99994 per cento" spiega Gian Francesco Giudice, teorico del CERN (corriere.it, 3 luglio)
- "Ahead of the expected announcement, the journal Nature reported 'pure elation' Monday among physicists searching for the Higgs boson. One team saw only "a 0.00006\% chance of being wrong, the journal said." (USA Today, 2 July 2012).

The 5 sigma Higgs!

July 2012

- "The data confirm the 5 sigma threshold, i.e. a probability of discovery of 99.99994% " (one of the many claims you could read on the web).
- "I dati confermano la soglia dei 5 sigma, vale a dire una probabilità di scoperta pari al 99,99994 per cento" spiega Gian Francesco Giudice, teorico del CERN (corriere.it, 3 luglio)
- "Ahead of the expected announcement, the journal Nature reported 'pure elation' Monday among physicists searching for the Higgs boson. One team saw only "a 0.00006\% chance of being wrong, the journal said." (USA Today, 2 July 2012).
- Etc. etc. \Rightarrow Google (July 2014)
- "higgs cern 0.00006 chance": $\approx 1.6 \times 10^{4}$ results

The 5 sigma Higgs!

July 2012

- "The data confirm the 5 sigma threshold, i.e. a probability of discovery of 99.99994% " (one of the many claims you could read on the web).
- "I dati confermano la soglia dei 5 sigma, vale a dire una probabilità di scoperta pari al 99,99994 per cento" spiega Gian Francesco Giudice, teorico del CERN (corriere.it, 3 luglio)
- "Ahead of the expected announcement, the journal Nature reported 'pure elation' Monday among physicists searching for the Higgs boson. One team saw only "a 0.00006\% chance of being wrong, the journal said." (USA Today, 2 July 2012).
- Etc. etc. \Rightarrow Google (July 2014)
- "higgs cern 0.00006 chance": $\approx 1.6 \times 10^{4}$ results
- "higgs cern '99.99994\%"' : $\approx 1.5 \times 10^{6}$ results
http://www.roma1.infn.it/~dagos/badmath/\#added

Probabilistic reasoning

Are we then really stuck?

Probabilistic reasoning

Are we then really stuck?
Fortunatly not, at some conditions . . .

- When the game becomes probabilistic...
... probability theory has to enter the game.

Probabilistic reasoning

Are we then really stuck?

Fortunatly not, at some conditions . . .

- When the game becomes probabilistic...
... probability theory has to enter the game.
??
But there weren't already Gaussians, χ^{2}, σ 's, etc.?

Probabilistic reasoning

Are we then really stuck?

Fortunatly not, at some conditions . . .

- When the game becomes probabilistic...
... probability theory has to enter the game.
??
But there weren't already Gaussians, χ^{2}, σ 's, etc.?
- The 'classical' framework of hypothesis tests misses because explicitally forbitten! - the foundamental thing we need in our game:

Probabilistic reasoning

Are we then really stuck?
Fortunatly not, at some conditions . . .

- When the game becomes probabilistic...
... probability theory has to enter the game.
??
But there weren't already Gaussians, χ^{2}, σ 's, etc.?
- The 'classical' framework of hypothesis tests misses because explicitally forbitten! - the foundamental thing we need in our game: probability of hypotheses.

Probabilistic reasoning

Are we then really stuck?

Fortunatly not, at some conditions ...

- When the game becomes probabilistic...
... probability theory has to enter the game.
??
But there weren't already Gaussians, χ^{2}, σ 's, etc.?
- The 'classical' framework of hypothesis tests misses because explicitally forbitten! - the foundamental thing we need in our game:
probability of hypotheses.
- 'Mismatch' between our natural way of thinking and the statistics theory:
- $P\left(H_{0} \mid\right.$ data $) \longleftrightarrow P\left(\theta \geq \theta_{\text {mis }} \mid H_{0}\right)$

Probabilistic reasoning

Are we then really stuck?

Fortunatly not, at some conditions . . .

- When the game becomes probabilistic...
... probability theory has to enter the game.
??
But there weren't already Gaussians, χ^{2}, σ 's, etc.?
- The 'classical' framework of hypothesis tests misses because explicitally forbitten! - the foundamental thing we need in our game:
- It is enough get rid of '900 statisticians (the 'frequentists') and reload 'serious guys',
\rightarrow restart from Laplace, together with Gauss, Bayes, etc.,

Restarting from scratch (with some repetitions)

We need to restart from scratch

(from a physicist's perspective)

Probabilistic Inference

Basic rules of probability

1. $0 \leq P(A \mid I) \leq 1$
2. $\quad P(\Omega \mid I)=1$
3. $P(A \cup B \mid I)=P(A \mid I)+P(B \mid I) \quad[$ if $P(A \cap B \mid I)=\emptyset]$
4. $\quad P(A \cap B \mid I)=P(A \mid B, I) \cdot P(B \mid I)=P(B \mid A, I) \cdot P(A \mid I)$

Remember that probability is always conditional probability!

A simple, powerful formula

A simple, powerful formula

$$
P(A|B| I) P(B \mid I)=P(B \mid A, I) P(A \mid I)
$$

$P(A \mid B)=\frac{P(B \mid A) P(A)}{D(B}$

A simple, powerful formula

A simple, powerful formula

$$
\begin{aligned}
& P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \\
& \text { It's easy if you try ...! }
\end{aligned}
$$

A simple, powerful formula

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause $\{$ given that event $\}$.

$$
P\left(C_{i} \mid E\right) \propto P\left(E \mid C_{i}\right)
$$

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause $\{$ given that event $\}$. The probability of the existence of any one of these causes \{given the event\} is thus a fraction whose numerator is the probability of the event given the cause, and whose denominator is the sum of similar probabilities, summed over all causes.

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right)}
$$

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause $\{$ given that event $\}$. The probability of the existence of any one of these causes \{given the event $\}$ is thus a fraction whose numerator is the probability of the event given the cause, and whose denominator is the sum of similar probabilities, summed over all causes. If the various causes are not equally probable a priory, it is necessary, instead of the probability of the event given each cause, to use the product of this probability and the possibility of the cause itself."

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause $\{$ given that event $\}$. The probability of the existence of any one of these causes \{given the event $\}$ is thus a fraction whose numerator is the probability of the event given the cause, and whose denominator is the sum of similar probabilities, summed over all causes. If the various causes are not equally probable a priory, it is necessary, instead of the probability of the event given each cause, to use the product of this probability and the possibility of the cause itself."

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{P(E)}
$$

(Philosophical Essai on Probabilities)

Laplace's "Bayes Theorem"

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

"This is the fundamental principle ${ }^{(*)}$ of that branch of the analysis of chance that consists of reasoning a posteriori from events to causes"
$\left(^{*}\right)$ In his "Philosophical essay" Laplace calls 'principles' the 'fondamental rules'.

Laplace's "Bayes Theorem"

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

"This is the fundamental principle ${ }^{(*)}$ of that branch of the analysis of chance that consists of reasoning a posteriori from events to causes"
$\left(^{*}\right)$ In his "Philosophical essay" Laplace calls 'principles' the 'fondamental rules'.

Note: denominator is just a normalization factor.

$$
\Rightarrow \quad P\left(C_{i} \mid E\right) \propto P\left(E \mid C_{i}\right) P\left(C_{i}\right)
$$

Laplace's "Bayes Theorem"

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

"This is the fundamental principle ${ }^{(*)}$ of that branch of the analysis of chance that consists of reasoning a posteriori from events to causes"
$\left(^{*}\right)$ In his "Philosophical essay" Laplace calls 'principles' the 'fondamental rules'.

Note: denominator is just a normalization factor.

$$
\Rightarrow \quad P\left(C_{i} \mid E\right) \propto P\left(E \mid C_{i}\right) P\left(C_{i}\right)
$$

Most convenient way to remember Bayes theorem

Conclusion?

What is the position of statistitians concerning p-values?

Conclusion?

What is the position of statistitians concerning p -values?

- The 2016 p-value revolution
\rightarrow http://www.roma1.infn.it/~dagos/dott-prob/
\rightarrow Nr. 13 (10/3)

Conclusion?

What is the position of statistitians concerning p -values?

- The 2016 p-value revolution
\rightarrow http://www.roma1.infn.it/~dagos/dott-prob/
\rightarrow Nr. 13 (10/3)
(Many other links there concerning p -values)

The End

FINE

