Bekenstein and Hawking meet Jordan and Freudenthal :
Non-Linear Symmetries of Black Hole Entropy
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Maxwell-Einstein-Scalar Theories

- i-"'l A 8 |ur vpo TA X

L= ) + Egi_j (¥) Oup' 0! + EIAE (¥) F,L.-,uF I Wawe Ras (o) € PUF;_I.UFPJ
D=4 Maxwell-Einstein-scalar system (with no potential
H:= (FMGy)' S : )

[ may be the bosonic sector of D=4 (ungauged) sugra ]
X : aL : :
Gl = gﬁpﬁlw - Abelian 2-form field strengths

static, spherically symmetric, asympt. flat, extremal BH

2 (1) 342 —2U(T) dr” 1 2, o .2
ds” = —e dt® +e T+ (dﬂ +51n9d-t;;)
T T
T:=—1/r
. _ (A T,
Q _/52 H=("an) ; dyonic vector of e.m. fluxes

1‘” 1 (BH charges)




AT i 1j - d
Sp=1 = f[([_;:) + gij" 0" + eV Vau(o (1), Q)ldr o
reduction D=4 ->D=1 .effective 1-dimensional (radial) Lagrangian

) 1 BH effective potential
Ver (9. Q) = —EQTM (») Q. p

Ferrara,Gibbons,Kallosh

1 ; ,
% — 2U Viea: in N=2 ungauged sugra,
hyper mults. decouple, and we thus
SOl S 5 disregard them : scalar fields
d”¢' _ gijeﬁff?W_BH belong to vector mults.
L dr? Ol -

Attractor Mechanism : 9,Ver =0 & lim,_ ¢ (1) = ¢} (Q)

formally flat geometry AdSs x S% near the horiz : . M3
coniormally Hat geometry 2 X near the horizon .SEB = 1;; dtg B BQ_R (d-rg n ngﬂ)
ik B—R T
near the horizon, the scalar fields are stabilized purely in terms of charges
Ag T
_ _ 7 _ T

Bekenstein-Hawking entropy-area formula for extremal dyonic BH



Symmetric Scalar Manifolds
Let’s specialize the discussion to theories with scalar manifolds which are

symmetric cosets G/H
[ N>2 : general, N=2 : particular, N=1 : special cases |
H = isotropy group = linearly realized; scalar fields sit in an H-repr.
G = (global) electric-magnetic duality group
[in string theory : U-duality]
G is an on-shell symmetry of the Lagrangian

The 2-form field strengths (F,G) vector and the BH e.m. charges
sit in a G-repr. R which is symplectic :

J!ICpn) =1 € RX R (Q1,Q9) = Q‘FQ;@MN = — (9. 91)

0. I symplectic product
- (% &)

G C Sp(2n.R); Gaillard-Zumino embedding
(generally maximal, but not symmetric)




Symmetricity : algebraic definition :
g=ha&t  Cartan decomposition of a Lie algebra g
h = compact Lie subalgebra

k = complementary of hin g
(b,b] €h  from the definition of subalgebra

h.t] ¢ ¢ by the adjoint action, h acts on k as a repr. whose real dim. is dim(G/H)
(it holds in any coset G/H)

€.¢] c h symmetricity condition; in gen. it simply holds ttca
Symmetricity : differential definition :

Dmﬂij‘ki =0 the Riemann tensor is covariantly constant

All symmetric scalar manifolds in supergravity are:

» strictly positive definite metric;
> Einstein spaces, with (constant) negative scalar curvature ' [7;; = Ag;;




“* symmetric

scalar manifolds of N=2, D=4 sugra

all special Kaehler Gv ,
=V , — Fyrr
of projective type Hv r dime = ny
quadratic sequence SU(1,n) 1 |
neN T1)®50 (n) n
o | SU(L1) . S0(2.n) B
R&T,, neN 70 © So@as0m 2 (n=1) n+1
3(n=2)
Eri_as)
J? Eg(—rsy@U(1) 3 27
H 50*(12)
JC S5U(3.3) . SU(3.3) p] 0
3 S(U(3@l(3)) — SU3)@sU3)all)
R Sp(6.R)
J3 00) 3 6

Rzg =

— 9591 — 9195 + Cikm

C

“jlp

mp
)




J¥, A=R,CHO isthe Jordan algebra of degree 3 of Hermitian 3x3 matrices
over the 4 division algebras of real (R), complex (C),
guaternions (H), octonions (O)

r.. Isthe Jordan algebra of degree 2 with a quadratic form with Lorentzian
signature (m,n)

Jordan algebras were completely classified by Jordan, Von Neumann and Wigner
in an attempt to generalize Quantum Mechanics beyond C

Gunaydin,Sierra, Townsend

They are related to the@f Freudenthal, Rosen and Tits

J Aut®N) | Stro(J) Conf(J) QConf(J)
ﬁllol\r/lagric Squares : - 5 ]R C —
r;cegtlyilassified R L \ - L Sﬂ(“ ) i 72(2)
and interpreted in sugra . - i

in

Cacciatori, Cerchiai, AM,
arXiv:1208.6153
[math-ph]




symmetric scalar manifolds G/H (including symm. SKGs of N=2, D=4 sugra) :

The G-representation space R of the BH em charges gets stratified, under

the action of G, in U-orbits (non-symmetric cosets G/# ). Ferrara, Gunaydin

# is the stabilizer (isotropy) group of the U-orbit = symmetry of the charge
configs., it relates equivalent BH charge configs

each U-orbit supports a class of crit. pts. of Vg, , corresponding
to specific SUSY-preserving properties of the near-horizon geometry

[ We will here be considering the so-called “large” U-orbits, corresponding to
extremal BHs with classical non-vanishing entropy |

When # is non-compact, there is a residual compact symmetry linearly acting

on scalars, such that the scalars belonging to the
“moduli space” #/mcs(#) (symmetric submanifold of G/H)

are not stabilized in terms of BH charges at the event horizon of the extremal BH

Ferrara, AM

The Attractor Mechanism is inactive on these unstabilized scalar fields,
which are flat directions of Vg, at its critical points.




symmetric scalar manifolds G/H (cont'd) :

The absence of flat directions at N=2 ¥%2-BPS attractors can thus be explained
by the fact that the stabilizer of the %2-BPS orbit is compact : #=H/U(1),

where H is the stabilizer of the scalar manifold G/H itself

The massless Hessian modes, ubiquitous at non-BPS crit pts of Vg, are actually
all flat directions of Vg itself at the considered class of crit. pts.

In other words, at each class of its crit pts, Vgy, and thus the (semi)classical
Bekenstein-Hawking BH entropy, does not depend on a certain subset of the
scalars

Such a set of scalars is thus not stabilized at the BH event horizon. Nevertheless...

BH Entropy is Independent on All Unstabilized Scalars

Thus, the flat directions of Vg at its critical points span various “moduli spaces”,
related to the solutions of the Attractor Eqgs.




** ‘large” U-Orbits of symmetric N=2, D=4 sugras

(n=ny € N)

%—BPS orbits non-BPS, Z # 0 orbits | non-BPS, Z = 0 orhits
O1_pps = 1 Onon—BPS,z40 = = Onon—-BPS.2=0 = &
E—E.Pb 0 non— 3443 H non— e = H
o SU(1Ln) SU(1n)
(Quadratic Sequence SU) - SO(1n-1)

Rl

SU{1,1)%80(2.n)

SU(1,1)250(2,n)

SU(1,1)280(2.n)

50(2)250(n) SO.1)550(Ln-1) S0(2)250(Zn-2)
(n=ny —1€N)

jﬂ- Eqi_ag) Eyi_ag) E;i_as)
3 Eg Eg(_a6) Eg_14
j[[-|] S0=(12) S0 S0=12)
3 ST (6) SU* (6) SU(4.2)
Jr-ﬂ STT8.3) SI7i4,3) SU(3.8)

3 SU(3) 50 (3) SL(3.C) SU1)eSU(L2)
Sp(6R) Sp(6,R) Sp(6.R)
SUI) SLEE) SO(21)

{Qa.Q5} =

Bellucci,
Ferrara,
Gunaydin,
AM




* non-BPS Z<>0 attractor “moduli spaces” of symmetric N=2, D=4 sugras

Ferrara,AM
% T dimg, R
hp =mCs g
. w1 1 e S0(a-1 | Hin=1]
! - g F] =
(n=ny —1&Nj
y Ee_
J—? Fsg 26) 9 6
A{=52)
H SU*(6) 5 _
J3 G 2 14
C SL(3.C) 9 :
J3 I3 A &
R SL{3R) 0 .
I3 SO3) ‘ 0

They are nothing but the

scalar manifolds
of symmetric N=2, D=5 sugras



let’s reconsider the starting Maxwell-Einstein-scalar Lagrangian density

R 1 N iau i 1 , A Y| pr 1 v A X
L = —5 T 5% () Oup* 0’ + ifmz (p) £ 71 + Ware Ras (p) 7 F Fop
...and introduce the following real 2n x 2n matrix :
I —R I 0 I 0 [+ RI'R —RI!
M — e
0 I 0 I —R 1 —I 'R !

M = M(R.I) = M(Re(N),Im (N)).
ML =M MCM =C

M=—(LL")" =L TL,

L = element of the Sp(2n,R)-bundle over the scalar manifold
( = coset representative for homogeneous spaces G/H)



...by virtue of this matrix, one can introduce a (scalar-dependent) anti-involution
in any Maxwell-Einstein-scalar gravity theory with symplectic structure :

Slp) + =CM(yp)
S*(p) = CM(p)CM(p)=C" =L,

Ferrara,AM,Yeranyan; Borsten,Duff, Ferrara,AM

...in turn, this allows to define an anti-involution on the dyonic charge vector Q,
which has been called (scalar-dependent) Freudenthal duality (F-duality)

§(Q) =-S5(p)(Q).
3 = —1d.

i 1
Byrecalling v, (0. 0) = ~59™M(p) Q

Freudenthal duality can be related to the effective BH potential :




All this enjoys a remarkable physical interpretation when evaluated at the horizon :

Attractor Mechanism oV, = 0 < lim,__ . ¢% (1) = ©%(Q)

Bekenstein-Hawking Ap ) L
S = — = WT{BH|5¢1IH”=G — —

T
entropy 4 S MnuQ

ro| =

...by evaluating the matrix M at the horizon ~_lim M (¢ (7)) = My (Q)

one can define the horizon Freudenthal duality as:

| _ 1 oS .
lim,—,o§ (Q) =t § (Q) = ~CMpQ =—C aZH - Q,

»-.;2 P -
S(Q) =3%u(Q) =-9
non-linear (scalar-independent) anti-involutive map on Q (hom of degree one)
Bek.-Haw. entropy is invariant under its non-linear symplectic gradient (defined by F-duality) :

S(Q) =5 (@u(Q) =5 (%ng) = 5(Q)

This can be extended to include at least all quantum corrections
with homogeneity 2 or 0 in the BH charges Q




Brown (1967);
Garibaldi; Krutelevich;
Borsten,Duff et al.

: : : Ferrara,Kallosh,AM;
< the (ir)repr. R is symplectic : AM Orazi Riccioni

_ AM AN
ICn =1 € RxR; (Q1,Q2) = Q1 Q5 Cyun = — (Q2, Q1) ;
symplectic product
¢ the (inrepr. admits a unique completely symmetric invariant rank-4 tensor

Lie groups “of type E.” : (G,R)

=i KM"JVFQ = KI[."L:LWFQ} =1c [R x R xR x R]s (K-tenSOF)
‘1: G-invariant quartic polynomial

Iy = KMNPQQMQNQPQQ =:€|Iy|, = Spr = ™/ |14]

¢ defining a triple map in R as
T:RxRxR =R (T(Q1,95,93), ) = KynproQX oY ol of

it holds (T(Q1,Q1,Q2),T(Qa, Q2,Q2)) = (Q1, Q2) Knnpo Q' QY 0F QF

this third property makes a group of type E, amenable to a description
in terms of Freudenthal triple systems




All electric-magnetic (U-)duality groups of D=4 sugras with symmetric scalar
manifolds and at least 8 supersymmetries are “of type E,”

N =2

N G R
G R

G ] ]
2,R) x|S (2.2+n) 4 /?/(Q,]E}XSO(G,HJ (2,6 +n)

/
SL(2,R) 4
/5 SU(1,5) 20

Sp(6| R) 14/ /

L (E,;, 912 — embedding tensor)

T(] 20 DT : )
SU($,3) / satisfies the first two axioms,
50+(12) ),,/ — but not the third one!

8 H B 56
Er(_{os) 56

“degenerate” groups “of type E,” _

Is(p,q) = (I2(p, q))° Spu = mV/ |11(p, )| = 7 |I2(p, )| -



In sugras with electric-magnetic duality group “of type E.”,
the G-invariant K-tensor determining the
extremal BH Bekenstein-Hawking entropy

Spr = T/ |14] I = KunpoQV QN QP Q% = e |1,

can generally be expressed as adjoint-trace of the product of G-generators
(dim R = 2n, and dim Adj = d)

n(2n+1) | d
tyntalPo — CrrCon
6d MNZAlPQ ™ (o 4 1) MIEON

.
Kynpo = —

The horizon Freudenthal duality can be expressed in terms of the K-tensor

OvIa(Q)| _ . 2
QM Vv [ 14(Q)|

Borsten,Dahanayake,Duff,Rubens
the invariance of the BH entropy under horizon Freudenthal duality reads as

1,(Q) = 1,(CQ) =I, ({C@ g;(@ﬂ)

Fr(Q)ar = Qur = KunpoQV QY o“




Are there other relevant symplectic matrices at the horizon ? YES!
T
(ME(Q)) CME(Q)=€C  ¢:= 1,(Q)/|1,(Q)]

(M"(Q)" =M"(Q)  Q"M"(Q) Q= —2]1(Q)

éM’ éN -

1 6
V) =Ky | Ky = Kunrg @7 Q

(opposite of the) Hessian of the BH entropy
SH (Miq (Q)) = eM” S Mu(Q)) = eMpy (Q)

This matrix is the (opposite of) pseudo-Euclidean metric of a non-compact,
pseudo-Riemannian, rigid special Kaehler manifold related to the U-orbit of BH
e.m. charges, which is an example of pre-homogeneous vector space (PVS)

Sato, Kimura



MEMN(Q) Q1 Qn —

1 6
= — E—K]\,{N
V114(Q)] V111(Q)]

This matrix is the (opposite of) pseudo-Euclidean metric of a non-compact,
pseudo-Riemannian, rigid special Kaehler manifold related to the U-orbit of BH
e.m. charges, which is an example of pre-homogeneous vector space (PVS)

Sato, Kimura

1st example : “large” BPS U-orbit in maximal supergravity

B 7y

N =8| D =4: scalar manifold Mpy_g = . dimg =70, rank =7

SU(R)
1 " Er)
Iy > ). s—=BPS Eqy—orbit in 56 repr.space : Op,~0 =
8 Eg(2)
(quaternionic) moduli space Mj,~q = P C Ern dimp = 40, rank =4
! SU(6) x SU(2) SU(8) /"’ ’

Fleim
MH = _92\/I; : metric of Op,50 x Rt = E"’—“ « RY: (ns,n_) = (30, 26)
6(2)




MY N (Q) Q1 Qn —

1 6
= T e———=Kun
VI(Q)] VI1(Q)]

2nd example : “large” non-BPS U-orbit in maximal supergravity

E
:non — BPS Eqy—orbit in 56 repr.space : Op, <o = ()
Eee)
Eg(s | :
[)ym.s. My, .0 = US_]:E()S) = My—g p=5, dimp =42, rank =6

E
—8%\/—1I4 : metric of Or,<0 X Rt = 7@

= x RT: (ne,n_)=(28,28)
Eg(6)

zero character (holding for all 1,<0 U-orbits)




Er ) Err) Er

——~ xRT —Z xRT . — x GL(1

Fo2) and Foo) are non-compact, real forms of E. x GL(1)
Regular Pre-Homogeneous Vector Space (PVS) of type (29) in the classification
by Sato and Kimura (77) :

(29) (GLQ) X E,, O® 4, V(1) ® V(56)).
() H ~ E;, (i) degf =4, (i) f(X) = T(",y") — EN(@®) — yN(¥)

— 1(T(x,y) — &n)* (see (1.16), or Proposition in §95).

A PVS is a finite-dimensional vector space V_together with a subgroup G of GL(V)

such that G has an open, dense orbit [Sato,Kimura; Knapp]
PVS are subdivided into two types;according to whether there exists a homogeneous
polynomial f on V which is imvariant under the semisimple part of G.

In this case : V = 56(fundamental irrep. of G=E,), f = quartic invariant polynomial 1,
H= isotropy ilizer) group = E4

Manifestly Eg-invariant expression of the quartic invariant 1, of the 56 of E-:
much before (77 = almost contemporary to sugra) the expression introduced by

Ferrara,Gunaydin ( ‘97) ! L 85 (p) 01 (q)
— (P + P'a)"+4 | qoIa (p) — P13 (q) + { s (p) 9ls(q)

I (.7 0. 1) = op ' Og

j




Simple groups. “of type Ez” of sugra almost saturate list of irr. PVS with invariant deq 4

. G Vv n Isotropy »avlrgebra Degree

SL(2,C) 1S*C> L - 4 N=2, T3 model
SL(6,C) IA%C® sl(3,C) x sl(3,C) 4 N=2 magic on R
SL(7,C) 5 I

SL(8,C) sl(3,C) 16

5L(3,0) o ;

:SL(S,(C) 4 .s[(2,tC) 0 5.10

SL(6,C) 1sl(2,C) x sl(2,C) x sl(2,C) 6

SL(3,C) x SL(3, tC) 9l(1,C) x gl(1,C) 6

Sp(6,C) , .5[(3 C) 4 N=2 magic on C
:szn('{’ (C) c® A1,2‘3392,5[(3 C) x s0(2,C), sl(2,C) x so(3, tC)

Spin(9, C) g 1 |spin(7,C) .2

"szn(lO (C) :(Cw .2‘3 gg X 5[(2’@»):5‘[(2{(:) X 50(3}@) ‘2_4 3-ctr. Inv. of N=0 MESGT
Spin(11, (C) c* 1 |sl(5,C) 4 ?

Spin(12,C) c* 1 |sl(6,C) i N=2 magic on H, N=6
Spin(14,C) c® i ,,95 ><9§ 8

e iC” 12 [sl(3,C),gl(2,C) 22

BS c |12 [f§,50(8,0) a5

Ef e L leg 4 N=2 magic on O, N=8

In sugra, n can be associated to the # of centers of the multi-centered BH

Here we only consider irreducible PVS, with G simple and complex Lie group




—> Classification of all groups “of type E,* ? Not yet complete....

Some advances in rather recent papers,
e.g. in Garibaldi, Guralnick, arXiv:1309.6611v1 [math.GR]

- |4 dimV  chark | &G Vv dimV  chark

B, A1 2Zn+1 #2 A M+p'M(iz1) 4 =p#0 p=2:T3 model
Dn /"'11 2n all ‘4.2 ' _—7

A, 2\ 3 £2 | A,

5 /"'13 20 2 B 4
3 ;’hg 8 all B 5 .

¢ half-spin 32 Gy A1 7 # 2
E- A7 2 F, A4 25 3

known simple Lie"groups “of type E-“ occurring in D=4 (super)gravity theories

The case Spin(11), 32 is related to the classification of susy sols. in M-theory :

can it be realized in D=4 as global symmetry LR e, it

of a Maxwell-Einstein (non-susy) system ? arXiv:1511.03460 [math.DG]
omogeneous non-symmetric scalar manifold, thus evac
Gibbons, Breitenlohner and Maison ‘s classification (1988) |




...some Hints for the Future...

s F-Duality applied to homogeneous non-symmetric special Kaehler manifolds
[deWit, Van Proeyen; Alekseevsky, Cortes, Mohaupt]

% Jordan Duality, groups “of type E;”, PVS , and D=5 (Super)Gravity

% extension to “small” U-orbits_: how to define “small” F-duality ?
[for intrinsically quantum black holes...]

s extension to Gauged (Super)Gravity:
embedding tensor, omega-deformations and Freudenthal duality :

work in progress in defining the F-Duality for Abelian gaugings of N=2, D=4 sugra, also
in presence of hypers. Possible extensions to Abelian gaugings N>2, D=4 sugras...

Use of (Freudenthal triple systems over) complexified Jordan Algebras in some remarkable cases...
Extensions to non-Abelian gaugings?
D<>47?

¢ extension to Multi-Centered (extremal) BH solutions:
some progress in Yeranyan, arXiv :1205.5618
Ferrara,AM,Shcherbakov, Yeranyan, arXiv:1211.3262

 into the quantum regime of gravity [U-duality over discrete fields]:

Freudenthal Duality for integer, quantized charges ?  Borsten, Duff et al.







