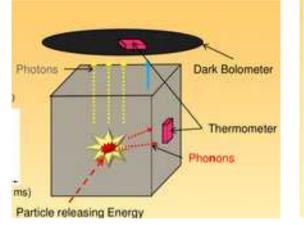


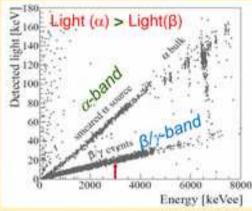
M. Pavan on behalf of

the CUPID-0* Collaboration

LUCIFER

Outline


- ♦ transition from LUCIFER → CUPID-0
- status of the ZnSe LUCIFER tower
- CUPID-0 phase II ?


* the name wants to echo the CUORE Upgrade with Particle Identification https://arxiv.org/abs/1504.03612v1

2

LUCIFER

ZnSe scintillating bolometers

LUCIFER (ERC Adv. grant) is over

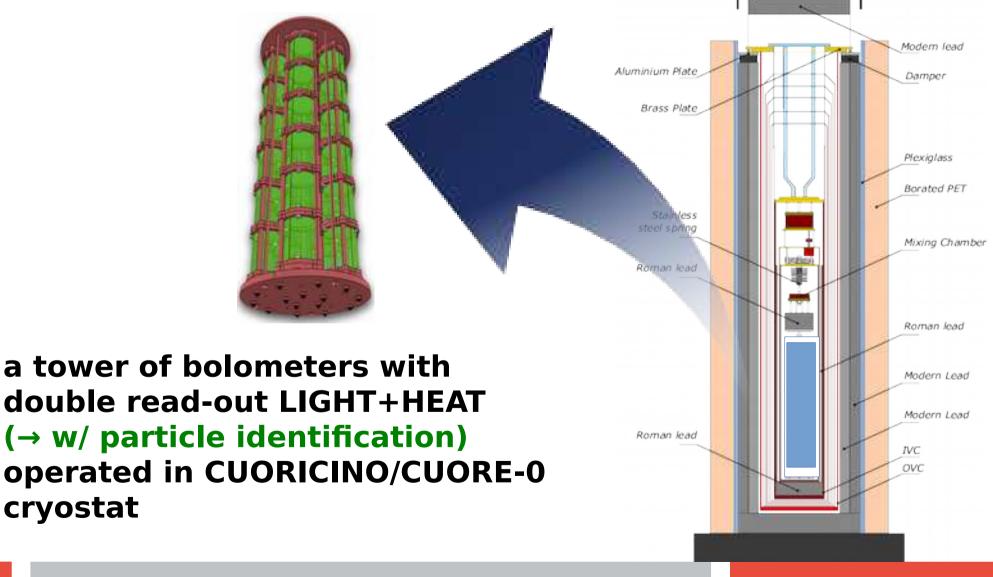
with **30 crystal ingots of Zn⁸²Se** ready to be operated as a scintillating bolometer array in Hall A refrigerator

LUCIFER transition to a new Collaboration and new Funding Institutions

CUPID-0

Italy: Roma1+LNGS+Genova+Milano-Bicocca+LNL France: Orsay+Saclay

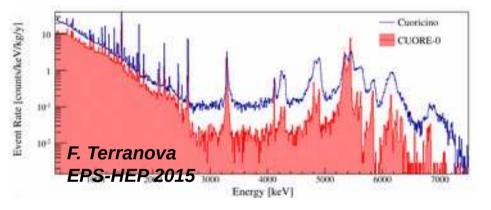
- increased number of participants
- main funding today from INFN and CALDER (ERC Starting grant) + LUCIFER heritage
- enlarged scientific program


CUPID-0 Collaboration ... today

CUPID-0

D. R. Artusa^{b,f}, F. Bellini^{a,c}, M. Biassoni^{d,h}, C. Brofferio^{d,h}, A. Camacho^e, S. Capelli^{d,h}, L. Cardani^{a,c,j}, P. Carniti^{d,h}, N. Casali^{a,c}, L. Cassina^{d,h}, M. Clemenza^{d,h}, O. Cremonesi^h, A. Cruciani^{a,c}, A. D'Addabbo^f, I. Dafinei^c, S. Di Domizio^{i,g}, M. L. di Vacri^f, F. Ferroni^{a,c}, L. Gironi^{d,h}, A. Giuliani^l, C. Gotti^{d,h}, G. Keppel^e, M. Maino^{d,h}, M. Martinez^{a,c}, S. Morganti^c, S. Nagorny^k, C. Nones^m, D. Orlandi^f, L. Pagnanini^k, M. Pallavicini^{i,g}, V. Palmieri^e, L. Pattavina^f, M. Pavan^{d,h}, G. Pessina^h, V. Pettinacci^{a,c}, S. Pozzi^{d,h}, S. Pirro^f, E. Previtali^h, A. Puiu^{d,h}, C. Rusconi^h, K. Schäffner^k, C. Tomei^c, M. Vignati^c

^aDipartimento di Fisica, Sapienza Università di Roma, Roma 1-00185 - Italy ^bDepartment of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 - USA ^cINFN - Sezione di Roma, Roma I-00185 - Italy ^dDipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 - Italy ^eINFN - Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020 - Italy ^fINFN - Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010 - Italy ^gINFN - Sezione di Genova, Genova I-16146 - Italy ^hINFN - Sezione di Milano Bicocca, Milano I-20126 - Italy ^hINFN - Sezione di Milano Bicocca, Milano I-20126 - Italy ⁱDipartimento di Fisica, Università di Genova, Genova I-16146 - Italy ⁱDipartimento di Fisica, Università di Genova, Genova I-16146 - Italy ⁱDipartimento di Fisica, Università di Genova, Genova I-16146 - Italy ⁱDipartimento di Fisica, University, Washington Road, 08544, Princeton - NJ, USA ^kINFN - Gran Sasso Science Institute, 67100, L'Aquila - Italy ⁱCNRS/CSNSM, Centre de Sciences Nucle aires et de Sciences de la Matie're, 91405 Orsay, France ^mService de Physique des Particules, CEA-Saclay, 91191 Gif sur Yvette, France


CUPID-0

cryostat

PURPOSE OF THE EXPERIMENT

• prove the scalability to large arrays of the α rejection technique (based on the Heat+Light read-out)

though impressively reduced in CUORE-0 α-induced background is still dominant for E>2.6 MeV

study 0vββ with LUCIFER
 Zn⁸²Se crystals

• & (phase II) add other detectors

ZnSe BOLOMETERS

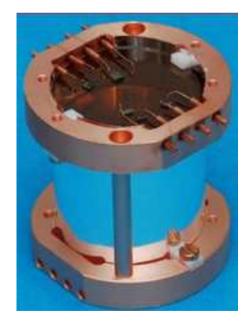
⁸²Se isotopic enrichment ~ 95.4% (enrichment @ URENCO Netherland)

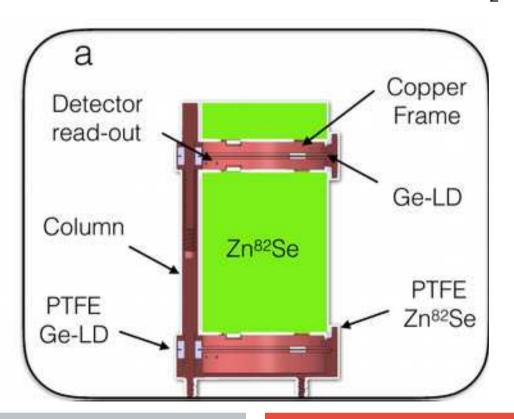
8

Zn⁸²Se crystal mass ~ 0.4 kg

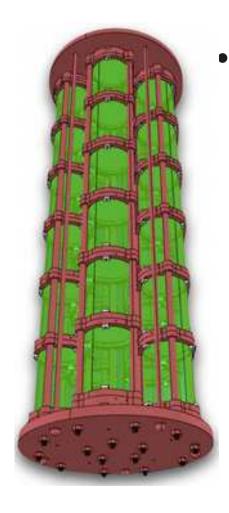
- mass defined by cut and polishing, still ongoing (30 ingots grown in Ucraina ISMA)
- the detector holder allows the use of variable size crystals

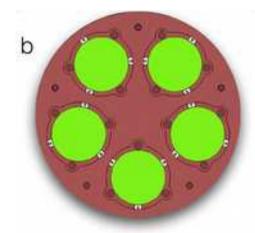
25 crystals of Zn⁸²Se 5.5 kg of ⁸²Se


Ge LIGHT DETECTORs

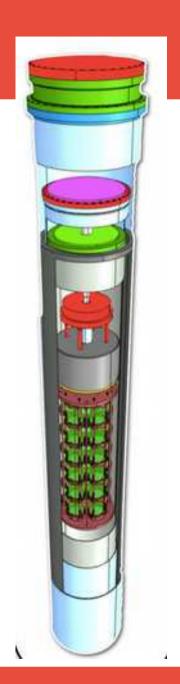


2 Ge light detectors


 \emptyset 44.5 mm h=0.15 mm coating with 60 nm SiO₂


3M VM 2002 reflecting foil

ZnSe ARRAY



high purity Cu Holder

 $2 < \mu Bq/kg^{232}Th$ 0.6 < $\mu Bq/kg^{238}U$

Roman Lead shield

 $0.3 < \mu Bq/kg^{232}Th$ $0.4 < \mu Bq/kg^{238}U$

10 LUCIFER -> CUPID-0

CUPID-0 WORK IN PROGRESS

→ Hall A refurbishing

- + cabling
- + improvement of the anti-Rn system
- + installation of LHe refill

Crystal cut and polishing

Holder Cu parts production and cleaning

(CUORE-0-like surface treatment)

→ time-schedule detector commissioning before end of June operation from 1th July

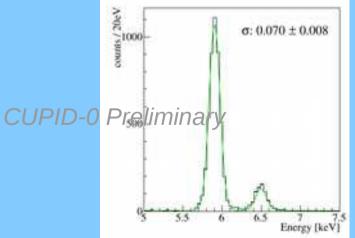
Zn⁸²Se CRYSTALS : HALL C TEST

3 enriched crystals	crystals masses [g]	440.2 + 442.1 + 439.3
	crystals average dimensions	h = 55 mm, Ø = 43.7 mm
	total detector mass [g]	1321.6
	isotopic abundance	96.3%
	total 82Se emitters	5.11x10 ²⁴

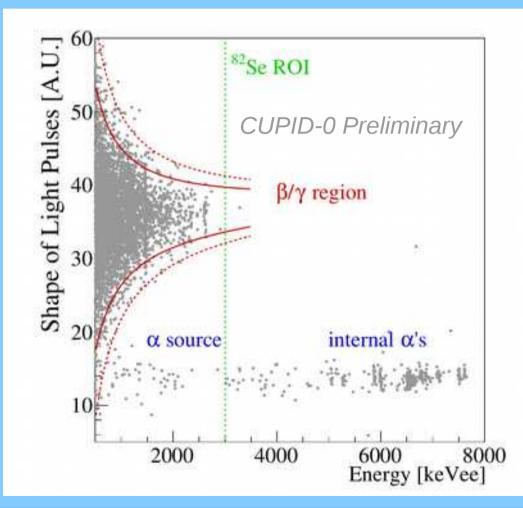
tested in Hall C @ T~ 20 mK

cryogenic problem prevented the cryostat from reaching the usual base T of ~ 5 mK

too high temperature spoiled performances


Zn⁸²Se CRYSTALS : HALL C TEST

LIGHT



σ_{baseline} ~ 40 eV σ @ 5.5 keV ~ 70 eV

Zn⁸²Se CRYSTALS - HALL C TEST

	O Prelimina CG-1 [µBq/kg]	CG-2 [µBq/kg]	CG-3 [µBq/kg]
²³⁸ U	17 ± 4	20 ± 5	<10
234U	23±5	18 ± 5	<10
²³⁰ Th	18±5	19 ± 5	17 ± 4
²²⁶ Ra	20 ± 5	25 ± 5	21 ± 5
²¹⁰ Po	100 ± 11	250 ± 17	100 ± 12
²³² Th	13±4	13±4	<5
²²⁸ Th	36 ± 7	30 ± 6	26 ± 6

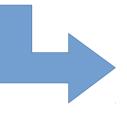
CUPID-0 GOALS

BACKGROUND (CUORE-0 E>2.6 MeV = $2 \ 10^{-2} \ c/keV/kg/y$)

 <u>from detector</u> (Cu+ZnSe+small parts) after rejection of α-background

< 10⁻³ c/keV/kg/y

- from cryostat/environment
 - ~ 10⁻³ c/keV/kg/y


depending on the ²¹⁴Bi content of cryostat and Pb shields

CUPID-0 GOALS

NEMO3 $\tau_{1/2}^{0v} > 0.3 \ 10^{24} \text{ y}$

```
~ 25 crystals = 11 kg ZnSe → 5.5 kg <sup>82</sup>Se
FWHM ~ 30 keV
background ~ 10^{-3} c/keV/kg/y
```


0.3 counts in 1 y in 30 keV nearly zero bkg approximation $S^{0\nu\beta\beta}_{1\nu} \sim 0.9 \ 10^{25} \text{ y} \ 90\% \text{ C.L.}$

2v\beta\beta ⁸²Se NEMO3 $\tau_{1/2} = (9.2 \pm 0.24_{-0.59}^{+0.67}) 10^{19} y$

use two natural crystal for bkg subtraction

CUPID-0 not only ZnSe

a phase II of Cupid-0 is possible

option (1) add a Molibdate array (scintillating bolometers)

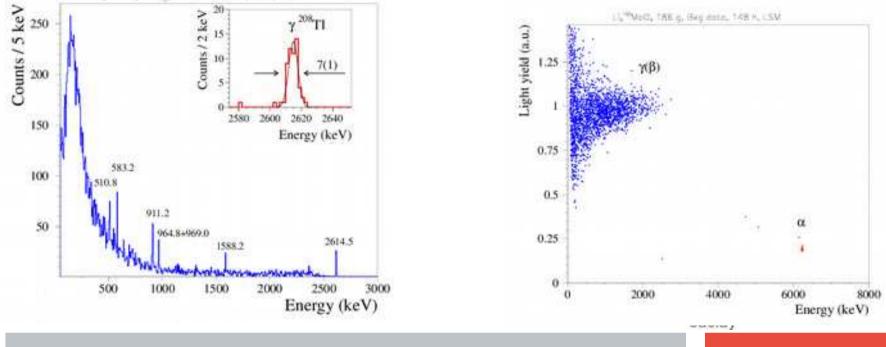
option (2) add a TeO, array (Cerenkov light read-out)

¹⁰⁰Mo option

- ✓ Q_{BB} = 3034 keV (above 2.6 MeV ²⁰⁸TI line)
- \checkmark LiMoO₄/ZnMoO_{4 are} good scintillators w/ better resolution than ZnSe
- Iarge scale scalability (purity, reproducibility and cost) still to be assessed

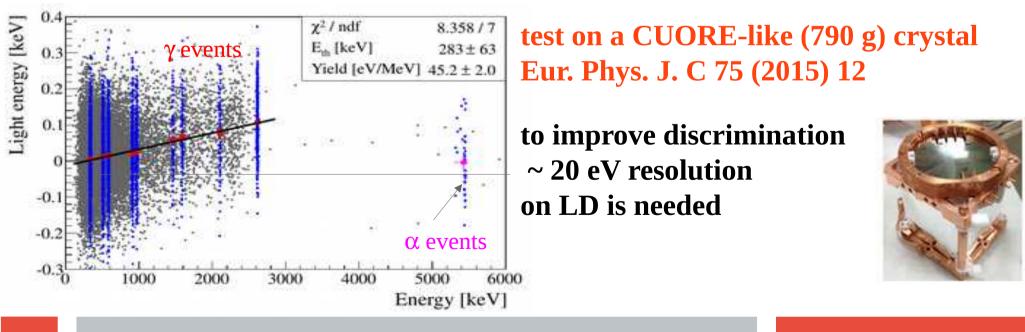
LiMoO₄ selected for a ~7 kg technology demonstrator (LUCINEU) because of:

Excellent energy resolution (4 – 7 keV FWHM at 2615 keV) **Easier crystallization** procedure


Systematic production of 40 enriched crystals will start in May 2016 (MoU INFN/IN2P3/ITEP) \rightarrow 20 to be installed in LSM and 20 in LNGS

¹⁰⁰Mo option

- \sim Q_{BB} = 3034 keV (above 2.6 MeV ²⁰⁸Tl line)
- \checkmark LiMoO₄/ZnMoO_{4 are} good scintillators w/ better resolution than ZnSe
- large scale scalability (purity, reproducibility and cost) still to be assessed


Test is ongoing on a 186 g enriched LMO crystal in LSM (EDELWEISS cryostat) at 20 mK

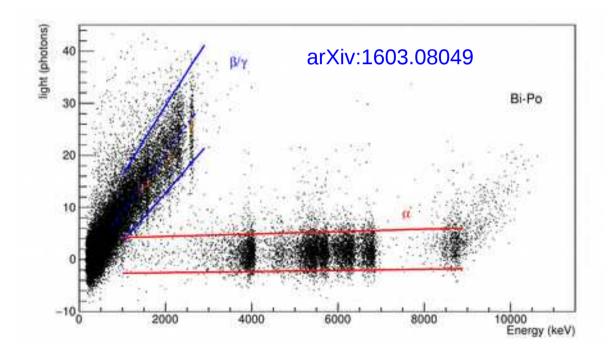
¹³⁰Te option

- TeO₂ same crystal of CUORE !!
- easy and cheap (already done for MiDBD and Cuoricino)
- low Q_{BB} (2530 keV) environmental γ 's are important (2615 keV)
- no scintillation observed one possibility is **Cerenkov light**

INFN-Cupid activities

LIGHT DETECTOR

requirements for the optimal LD


- reproducibility
- easy production and instrumentation as bolometers
- 20 eV energy threshold

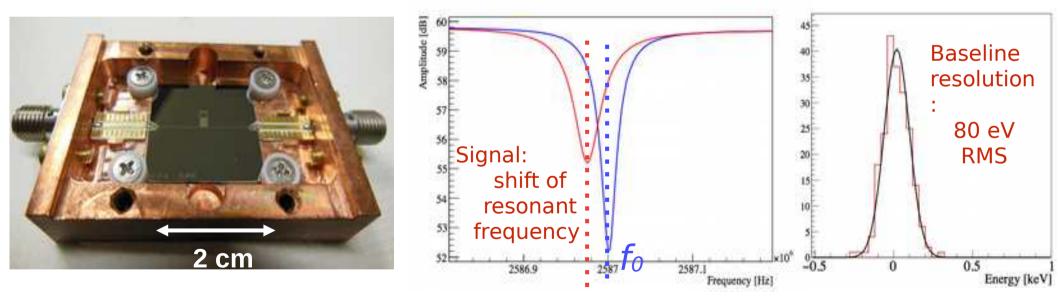
Si wafers w/ Luke-Neganov effect &/or MKIDs

phase II demonstrator scintillation/Cerenkov

INFN-Cupid activities

Si wafers w/ Luke-Neganov effect

caution: result obtained on 1 cm³ crystal



22 LUCIFER -> CUPID-0

INFN-Cupid activities

CALDER R&D (ERC StG 2014-2018) www.roma1.infn.it/exp/calder Alternate sensor to NTD and TES: Microwave Kinetic Inductance Detector (MKID). Pros of MKIDs: high scalability and multiplexing, no microphonic noise.

• Phase I - completed: single pixel, high-Q (1.5x10⁵) Aluminum resonator.

- Phase II ongoing: test more sensitive superconductors (TiAl, TiN and Ti+TiN).
 - Goal: 20 eV RMS resolution. *TiAl preliminary: 55 eV RMS.*
- Phase III 2017: test at LNGS with TeO₂ / ZnSe bolometers.

Conclusions: from CUPID-0 to CUPID

Cupid-0 aims at exploring the (at least some) possible options for the CUPID detector

a 1-ton 0-background experiment requires much more than this

- improvement in purity control of materials
- enrichment and crystal production
- improvement in main detector performances

new ideas & collaborators needed and WELCOME !

LUCIFER -> CUPID0

$S_{1y}^{0\nu\beta\beta} \sim 0.9 \ 10^{25} y \ 90\% \ C.L.$

= 2.44 @ 90% C.L.

- T = 1 y n_L = Poisson maximum number of counts compa
- A = 82 $M_{\rm bb} = 5.5 \, \rm kg$

$$\epsilon$$
 = detection efficiency ~ 0.8

$$F_{0\nu}^{ZB} = \ln 2N_{\beta\beta}\epsilon \frac{1}{n_L} = \ln 2 \times \frac{M_{\mu}crr_A}{A} \frac{m_L}{n_L}$$
$$= \ln 2 \times \frac{\epsilon N_A}{A_{\beta\beta}} \frac{M_{\beta\beta}T}{n_L}.$$

$$\begin{aligned} \xi_{0\nu}^{\text{ZB}} &= \ln 2N_{\beta\beta}\epsilon \frac{T}{n_L} = \ln 2 \times \frac{x\eta\epsilon N_A}{A} \frac{MT}{n_L} \\ &= \ln 2 \times \frac{\epsilon N_A}{A} \frac{M_{\beta\beta}T}{m_L}. \end{aligned}$$