

Is the Higgs boson what we expect it to be? ATLAS and CMS Higgs coupling combination

E. Pianori University of Warwick

Introduction

Higgs phenomenology Inputs to the combination Statistical framework Combined Signal strength Combined Higgs coupling Towards Model independent measurements Conclusion and outlook

Higgs boson: preparing the discovery!

Brout–Englert–Higgs mechanism developed in the 60s - new field at the origin of the EWK symmetry breaking

Very predictive theory:

- existence of a new scalar boson (the Higgs), whose coupling with SM particles are completely specified by the theory (for given value of m_H) - only un-known is the Higgs boson mass itself

Higgs mass between 114 and 200 GeV from LEP, Tevatron and EW global fit

—> when LHC started, window to explore at the LHC was relatively small

Still not obvious that the simplest model was the correct theory! (and it still isn't!)

27.05.2016 E. Pianori, Universitá di Bologna 3

Ω 1 2 3 $\mathbf 4$ 5 6 30 300 100 **Excluded** $\Delta \alpha$ $-0.02750+0.00033$ \cdots 0.02749 \pm 0.00010 incl. low Q² data Theory unce<mark>r</mark>taint

 m_H [GeV]

 m_{l} _{imit} = 161 GeV

The Large Hadron Collider (LHC)

Just re-started data taking this month!

Higgs discovery- 4th of July 2012

- \sim 5/fb of 7TeV + \sim 5/fb of 8TeV data
- \geq 50 excess from both ATLAS and CMS - CMS: γY , WW, $\tau\tau$, bb, ZZ->4leptons - ATLAS: YY and ZZ->4leptons
- Englert and Higgs won the 2013 Nobel prize!

Introduction Higgs phenomenology Inputs to the combination Statistical framework Combined Signal strength Combined Higgs coupling Towards Model independent measurements Conclusion and outlook

Higgs decay modes

Total width Γ _{TOT} not experimentally accessible: \sim 4 MeV in S.M.!

Higgs production modes directly searched for

Higgs production modes directly searched for

Distinct kinematics that help separating it from background:

- two high pT jets with large rapidity gap
- no color flow between them
	- —> suppressed hadronic activity in central region

Higgs production modes directly searched for

 WH/ZH $\frac{1}{2}$ Best production mode for H-> bb decay Leptons from W/Z decays are powerful handles against background

Higgs production modes directly searched for

Final states with at least two jets originating from b-quark

Depending on W and H decay mode, variable number of jets and leptons

Include \sim all Higgs decay modes

E. Pianori, Universitá di Bologna 11

Higgs production modes directly searched for

27.05.2016 E. Pianori, Universitá di Bologna 12

Other production modes

ggZH: 8% NNLO corrections for σ(ZH) harder pT(H) spectrum —> enhanced in the most sensitive region of H—>bb search

bbH: 1% of σ(ggF) experimentally indistinguishable from ggF

tH:

very small cross section, mostly due to destructive interference For opposite sign W/t Higgs couplings, σ(tHqb) increases by factor 13 and σ(WtH) by factor 6

Since 2012..

- Final Run 1 dataset x2.5 what used for Higgs discovery
	- ATLAS: 4.5/fb@7TeV and 20.3/fb@8TeV
	- CMS: 5.1/fb@7TeV and 19.8/fb@TeV

 \rightarrow x 2.7 Higgs bosons available with full dataset!

Various measurements to explore its properties, all consistent with S.M.

1) Higgs mass measured with $< 0.2\%$ precision $arXiv: 1503.07589$

• combination of ATLAS and CMS high mass resolution YY and ZZ*->4leptons channels

MH = 125.09 ± 0.24 GeV [±0.21 (stat.) ±0.11(syst.)]

2)Test for Spin/Parity quantum numbers all consistent with spin-0, CP-even • spin-2 models tested are all ruled out at 99.9% C.L.

3)Higgs discovered in boson final state, confirm couplings to fermions

• indirect evidences from ggH production mode, direct evidence from H->tau tau decay

4) Measure Higgs yields for all accessible Production x Decay modes

Introduction Higgs phenomenology Inputs to the combination Statistical framework Combined Signal strength Combined Higgs coupling Towards Model independent measurements Conclusion and outlook

Searched performed in final state associated with one decay mode - consider (\sim) all production mechanisms

too small cross sections

Event Categorisation

For each decay mode, events classified based on kinematic characteristics and detailed properties

- improve overall sensitivity, thanks to better bkg rejection
- allow separation of different production modes

ATLAS+CMS combination includes \sim 600 exclusive categories

Signal Strength

- historically, first property to be measured
- characterise the Higgs boson yields

For specific production and decay mode $i \rightarrow H \rightarrow f$ ratio between the measured Higgs boson yield and the SM expectation

$$
\mu_i^f = \frac{\sigma_i \cdot BR^f}{(\sigma_i)_{SM} \cdot (BR^f)_{SM}} = \mu_i \times \mu^f
$$

assume narrow width approximation

Can't access separately σ and Branching Ratio without assumptions

$$
\mu_i = \frac{\sigma_i}{(\sigma_i)_{\text{SM}}}
$$
 and $\mu^f = \frac{\text{BR}^f}{(\text{BR}^f)_{\text{SM}}}$

signal strength for production *µi* assume SM BR

signal strength for decay *µf* assume SM production

Signal yields in category k:

production and decay signal strength

$$
n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum_{i} \sum_{f} \left(\mu_i \mu^f \right) \left\{ \sigma_i^{\text{SM}} \times A_i^f(k) \times \epsilon_i^f(k) \times \text{BR}_{\text{SM}}^f \right\}
$$

 $\mathcal{L}(k)$: integrated luminosity

: sum over production process i with inclusive cross section σ_i^SM

 \overline{i}

: sum over decay modes f with branching fraction BR^f_{SM}

Signal yields in category k:

production and decay signal strength

$$
n_{\text{signal}}(k) = \mathcal{L}(k) \times \sum_{i} \sum_{f} \left(\mu_i \mu^f \right) \left\{ \sigma_i^{\text{SM}} \times \left(A_i^f(k) \times \varepsilon_i^f(k) \right) \times \text{BR}_{\text{SM}}^f \right\}
$$

Acceptance and efficiency for process i —> H —> f from MC simulation

Background measurements from control regions

Background processes described by MC simulation or with data-driven model - either constrained in control region or predicted relying on σ(theory)

Introduction Higgs phenomenology Inputs to the combination Statistical framework Combined Signal strength Combined Higgs coupling Towards Model independent measurements Conclusion and outlook

Profile likelihood formalism for (systematic) uncertainties

$$
L(\vec{N} | \vec{\mu}_i, \vec{\mu}_f, \vec{\theta}) = \prod_{k=0, \text{nbins}} Poisson \left(N_k | \sum_{i, f} \mu_i \cdot \mu^f \cdot S_{i,k}^f(\vec{\theta}) + \sum_{m} B_m(\vec{\theta}) \right)
$$
\n
$$
Inclusive SM cross-section\n
$$
L(k) \times \left\{ \sigma_i^{SM} \times A_i^f(k) \times \varepsilon_i^f(k) \times BR_{SM}^f \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left(N_{M} \right) \right\}
$$
\n
$$
= \left\{ N_{M} \left
$$
$$

WARW

THE UNIVERSITY OF WA

- simulation of high energy process: uncertainty due to order in perturbation theory and choice of Parton Distribution Function
- simulation of soft physics:underlying event, parton shower model
- detector simulation: energy scale, selection efficiencies

Also, predict number of background events relying on control region

- extrapolation from control-region to signal region

control region: region of phase space with similar kinematics w.r.t signal region, but orthogonal to it

Likelihood can describe discriminating distribution under a wide range of parameters for which the true values are unknown (energy scales, QCD scale etc..)

$$
L(\vec{N} \mid \vec{\mu}_i, \vec{\mu}_f, \vec{\theta}) = \prod_{k=0, \text{nbins}} Poisson\left(N_k \mid \sum_{i,f} \mu_i \cdot \mu^f \cdot S_{i,k}^f(\vec{\theta}) + \sum_m B_m(\vec{\theta})\right)
$$

θ: nuisance parameter

Correlated parameters as needed between channels and experiments - only full correlation or no correlation considered in current combination

Uncertainties are included in the likelihood in two parts:

- auxiliary constraint on the nuisance parameter that represents the uncertainty
- parametrisation of how the signal/background predictions respond to changes in the nuisance parameter

Likelihood fit includes 4200 nuisance parameters

- **Detector systematic uncertainties**: generally correlated within experiment, not between experiments

- **Signal theory uncertainties** (QCD scale, PDF, UEPS) on inclusive cross sections: correlated between experiments, uncorrelated between processes

- **Signal theory uncertainties on acceptance and selection efficiency**: uncorrelated between experiments (usually small, and different method to estimate them)

- **PDF uncertainties on signal cross sections**: correlated for a given process across experiments, but uncorrelated between different processes (except WH/ZH/VBF)

- **No correlation assumed between Higgs BRs** (except WW/ZZ) Effect of ignoring correlation shown to be generally small, expect for few specific measurements

- **Background theory uncertainties**: usually not correlated, treated differently by the two experiments. When modelled completely by MC, fully correlate production cross sections (f.e. ZZ continuum)

From likelihood *L*(ATLAS+CMS) construct the profile likelihood test statistic

 $\Lambda(\vec{\alpha}) = \frac{\left(\mu(\vec{\alpha}, \hat{\vec{\theta}}(\vec{\alpha}))\right)}{\mu(\hat{\vec{\alpha}}, \vec{\theta})}$ POI and nuisance parameters that maximise likelihood

 α = parameter(s) of interest (POI) (such as μ , σ *Br etc..)

 $L(\hat{\vec{\alpha}}, \hat{\vec{\theta}})$

Introduction Higgs phenomenology Inputs to the combination Statistical framework Combined Signal strength Combined Higgs coupling Towards Model independent measurements Conclusion and outlook

ATLAS + CMS combination: signal strength

test global compatibility with the SM

- Most precise result at the expense of the largest assumptions
- Signal theoretical uncertainties same size as statistical uncertainty dominated by uncertainty on the ggF cross sections

Recent progress on theory: highlights

27.05.2016 E. Pianori,Universitá di Bologna 30

 M_x [GeV]

Generated with APFEL 2.4.0 Web

Signal strength for production and decay

Assumptions:

SM Branching ratios Same signal strength modifier at 7 and 8 TeV bbH scales as ggF, tH as ttH, ggZH as quark-initiated ZH

Assumptions:

SM production cross sections BRs do no depend on center of mass energy

Combination correspond \sim to summing ATLAS and CMS integrated luminosity \rightarrow improve sensitivity by $\sim \sqrt{2}$

Evidence for VH production

Observation of VBF production and H—>tau tau decay! —> direct observation of Higgs coupling to fermions!

Boson versus Fermion-mediated production

Introduction Higgs phenomenology Inputs to the combination Statistical framework Combined Signal strength Combined Higgs coupling

Towards Model independent measurements Conclusion and outlook

k-framework: beyond signal strength

Introduce a set of κ to parametrise potential deviation from the SM couplings

Assume:

- one single resonance at mass 125.09 GeV
- narrow width approximation
- tensor structure of a CP even scalar (only modifications to coupling strength)

 κ correspond to LO degree of freedom

higher-order accuracy in calculation of σ and BR in SM is not necessarily preserved if $\kappa_1 \neq 1$ assume that higher-order QCD corrections factorise from any rescaling of κ \rightarrow remain valid over the whole range of κ _j values considered

k-framework: beyond signal strength

Consider σ(ggF \rightarrow H \rightarrow WW/ZZ): σ(ggF) * Γ_{WW}/Γ_{TOT}

in case new physics in the loop, that does not couple with SM particle, use κ_q as effective coupling modifier (same thing is possible for κ_χ)

k-framework - SM modifiers

Factors depend on: Assumed value mH, Calculations of σ,Γ Unamatic selections

process with interference allow to measure relative sign of couplings! assume $\kappa_t > 0$ without loss of generality

Boson and Fermion couplings

test difference between boson couplings (related to EWK symmetry breaking) and Yukawa couplings to fermions $\kappa_Z = \kappa_W = \kappa_V$ and $\kappa_t = \kappa_T = \kappa_b = \kappa_F$

assume no new particles in loops no invisible (BSM) decay

fit for tree-level couplings KZ , KW , Kt , $Ktau$, Kb , Kmu

express these parameters as reduced coupling modifiers

—> qualitative consistency of the measurements with the SM

$$
\boldsymbol{g}_{\text{W, Z, H}} \alpha \, \boldsymbol{M}^2_{\text{W, Z, H}} \text{ and } \boldsymbol{g}_{_{F}} \alpha \, \boldsymbol{m}_{_{F}}
$$

Limits on BMS contributions

BSM scenarios with new heavy particles that contributes only to loop processes

- Fix all non-loop κ_i to SM value
- new particles do not contribute to Γ(H)
- \rightarrow only κ_q and κ_χ may be affected by new particles

represent loop process with effective parameters instead of SM content $\rightarrow \kappa_q$ and κ_x only free parameters in the fit

BSM scenarios with new heavy particles that contributes only to loop processes

Fix all non-loop κ_i to SM value

new particles do not contribute to Γ(H)

 \rightarrow only κ_q and κ_χ may be affected by new particles

Contribution to the Total width from BSM

Set limits on BR to invisible and undetectable Higgs decay modes, BRBSM - if such decay exists, total width larger than in the SM

'g and $\bm K_{\rm Y}$ effective coupling modifiers $\|\bm K_{\rm t}\cdot\|$ dominated by ttH, ggF and Hyy loops no longer contribute $\hskip 10mm$ 43 Kg and K_Y effective coupling modifiers K_t : dominated by ttH, ggF and Hyy loops no longer contribute

All previous results rely on a number of assumptions

Present final Run1 results with minimal assumptions and minimal dependencies from theoretical uncertainties

Most generic model based on ratio of cross sections and BR

$$
\sigma_i\cdot \text{BR}^f=\sigma(gg\to H\to ZZ)\times\left(\frac{\sigma_i}{\sigma_{ggF}}\right)\times\left(\frac{\text{BR}^f}{\text{BR}^{ZZ}}\right),
$$

no total width assumption, only narrow width approximation

large theory uncertainties on signal production sec and BRs can be ignored \rightarrow results will stay valid also when newer calculations will be available

SM assumption enters only in acceptances and selection efficiencies:

kinematics described via SM Higgs simulations

Discovery of a new scalar massive boson on July 2012 was a major discovery

- prompted a lot of measurements to test its compatibility with the Higgs boson of the S.M

Combining ATLAS and CMS Higgs boson improves precision

- sensitivity on signal strength improved by almost $\sqrt{2}$
- observation of $H \rightarrow$ tautau decay and VBF production
- signal strength measured with $O(10)\%$ precision
- Many parameterisations have been studied All results are consistent with the S.M. predictions within uncertainties p-value compatibility with the S.M. in range 10%-88%

With increasing size of data sample, move towards more model independent measurements

- reduce the number of assumptions
- reduce dependence on theory uncertainties

—> measure as many fiducial and differential cross sections as possible

Introduction Higgs phenomenology Inputs to the combination Statistical framework Combined Signal strength Combined Higgs coupling Towards Model independent measurements Conclusion and outlook

Fiducial and differential cross sections

WARW The cross section, σi, in a given fiducial region is given by: THE UNIVERSITY OF WARWIC Treco reconstructed event yield $\sigma_i = \frac{N_i^{data} - N_i^{bkg}}{c_i \int L dt}$ $c_i = \frac{i}{N_i^{\text{fid}}}$ event yield at particle level **LHC** data Simulation of detector Simulation of 'soft physics' physics process. Underlying event
Parton shower model already performed in Run 1 for ZZ/ɣɣSimulation of high-energy particle level physics process ₃ scale Repr uncertain Reconstruction Event selection of the data **ATLAS** $H \rightarrow ZZ' \rightarrow 4I$ ackground Z-jets, f ignal (m. ~ 125 GeV) -7 TeV: (Ldt = 4.8 fb Analysis reconstructed events

27.05.2016 E. Pianori, Universitá di Bologna 49

 m_e [GeV]

Fiducial and differential cross sections

Allows for direct comparison with theoretical predictions:

Theoretical uncertainties have limited impact on differential cross section:

Fiducial and **differential** cross sections

Measure the cross section in bin of a differential distribution: number of jets associated with Higgs productions

[JHEP09\(2014\)112](http://link.springer.com/article/10.1007/JHEP09(2014)112)

with fiducial cross sections (total or differential) can test BSM scenarios - signal kinematics distribution for BSM model are different w.r.t. SM, hence

also signal selection efficiencies

minimal theory-dependence theory-dependent

Fiducial Cross Sections Couplings Fit

Need well established signal to perform measurement

—> will take a lot of integrated luminosity to measure fiducial cross sections for all productions/decay modes. Global analyses desirable in the meantime.

Simplified (template) Cross Section

Measurement: mu per production mode, split into mutually exclusive kinematic bins for each of the main production modes

e.g.
$$
\mu_{gg \to H}
$$
 old \longrightarrow $\mu_{gg \to H}^{0-jet}$ $\mu_{gg \to H}^{\geq 1-jet}$ $\mu_{gg \to H}^{\geq 2-jet+\text{VBF}}$ new

Goal: balance between optimisation for sensitivity while reducing dominant theory dependence in the measurement

Run-2 so far: 3.2/fb of 13 TeV data

Measurement of the Higgs cross section

From **Fiducial** to **Total** Inclusive Higgs production cross section

Combined observed significance: Expected: 3.4σ Observed: 1.4σ

Compatibility with SM: 1.3σ

Introduction Higgs phenomenology Inputs to the combination Statistical framework Combined Signal strength Combined Higgs coupling Towards Model independent measurements Conclusion and outlook

The first run of the LHC was a major success a new particle has been discovered!

Since then, a wealth of measurements confirmed its compatibility with the predictions from the S.M.

But the devil hides in the details! current precision in coupling measurement is far from the few % level needed to exclude and constrains new physics not already excluded by lack of direct observation! m_{4} ^[GeV]

Eagerly waiting for more data from the LHC!!

Outlook

A lot more Higgs events coming! as well as:

- large increase in <number of collision/bunch crossing>
- harder to trigger and reconstruct them

It may become harder to identify Higgs events in the future, so not so fast progress on precision measurements! projections do not scale with √*L!*

Prospect

 \sqrt{s} = 14 TeV: $\int L dt = 300$ fb⁻¹; $\int L dt = 3000$ fb⁻¹

WARW THE UNIVERSITY OF WARWI

[ATL-PHYS-PUB-2014-016/](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2014-016/)

ATLAS+CMS combination

Each category:

- not very pure in case of production modes
- —> large cross-contaminations in most channels

