

FORMAZIONE ED EVOLUZIONE DELL'AMBIENTE: MISURE E MODELLI

27-28 October 2016 Laboratori Nazionali del Gran Sasso

La struttura della Terra: metodi geologici, fisici e chimici di investigazione

Livia Ludhova Forschungzentrum Jülich e RWTH Aachen, Germania

Perché studiare la nostra Terra?

Geología attorno noí...

Exploding volcanoes....

Ancient ocean floors.....

Folded mountains.....

Earthquakes.....

Amatrice 2016

Cosa sappiamo della nostra Terra?

Porpece			
AZAR	Distance to the Sun	150 000 000 km	
	Mean radius	6 371 km	
	Circumference	40 000 km	
	Mass	5.97 x 10 ²⁴ kg	
O colo3	Age	4.54 x10 ⁹ years	
	Life	Present ©	
	Population	7.5 billions	N.A.

Earth magnetic field

Protection against cosmic radiation!!!

Life on Earth would be not possible without it!

Earth formation

A Rocky Body Forms and Differentiates

(From Smithsonian National Museum of Natural History - http://www.mnh.si.edu/earth/text/5_1_4_0.html)

Accretion

Magma sea (Primitive mantle)

Mantle-crust differentiation

Metallic core segregation

Earth heat budget

Surface heat flux: 47 ± 3 TW

Earth chemical composition

Earth density

Earth temperature

Earth structure

Inner Core - SOLID

- about the size of the Moon;
- Fe Ni alloy;
- solid (high pressure ~ 330 GPa);
- temperature ~ 6000-7000 K;

Outer Core - LIQUID

- 2260 km thick;
- FeNi alloy + 10% light elem. (S, O?);

• liquid;

•temperature ~ 4000 - 600 K;

• **geodynamo:** motion of conductive liquid within the Sun's magnetic field;

D'' layer: mantle –core transition

- ~200 km thick;
- seismic discontinuity;
- unclear origin;

Earth structure

Lower mantle (mesosphere)

- rocks: high Mg/Fe, < Si + Al;
- T: 600 3700 K;
- high pressure: solid, but viscose;
- "plastic" on long time scales:

Transition zone (400 -650 km)

- seismic discontinuity;
- mineral recrystallization;
- partial melting: the source of midocean ridges basalts;

Earth structure

Upper mantle

composition: rock type peridotite
includes highly viscose
astenosphere on which are floating
litospheric tectonic plates
(lithosphere = more rigid upper mantle + crust);

Crust: the uppermost part

OCEANIC CRUST:

- created at mid-ocean ridges;
- ~ 10 km thick;
- CONTINENTAL CRUST:
- the most differentiated;
- 30 70 km thick;
- igneous, metamorphic, and sedimentary rocks;
- obduction and orogenesis;

Earth's crust dynamics

Tectonic plates

Movement of few cm / year measured by satellites.

Tectonic plates float on plastic asthenosphere.

Movement driven by mantle convection.

Rock types in tectonic settings

Redrawn by W. Milner, as modified from Montgomery (1990) and Monroe and Wicander (1994).

Come studíare la Terra?

Classical and structural geology

Stratigraphy and paleontology

Petrology (study of rocks) Rocks under the polarized light microscope

igneous: basalt (oceanic crust)

igneous: granite (continental crust)

igneous: peridotite (upper mantle)

metamorphic: micashist (continental crust)

sedimentary: sandstone (continental crust)

sedimentary: limestone (continental crust)

Thermo-barometry

Evolution of metamorphic rocks

Traces of different orogenies (Alpine, Variscan, Caledonian...)

1) Identify suitable reactions

(Fe – Mg exchange between garnet and biotite)

2) **Polarized microscopy**: find mineral grains in equilibrium

3) Electron microprobe: get chemical compositions from points in equilibrium
4) Calculate equilibrium (p,T) conditions

Variscan metamorphism in Tatra Mts., Slovakia

J. metamorphic Geol., 1999, **17**, 379–395

Fluid inclusions

Radio geochronology

CO₂ – N₂ fluid inclusions in Quartz grains

10 microns

Microthermometry with fluid inclusions

- 1) Analyzing chemical composition of fluid inclusions
- 2) Observing temperature of phase transitions by heating and cooling

- 1) Identify decay reaction
- 2) Identify closed system
- 3) Measure content of parent and daughter elements
- 4) Calculate time from the closure of the system

K-Ar system, Ar-Ar, U-Th, 14C

Mineralogy

Progress in Particle and Nuclear Physics 73 (2013) 1-34

Crystallography

Ultra high pressure lab experiments

P – primary, longitudinal waves S – secondary, transverse/shear waves **Discontinuities in the waves** propagation and the density profile but no info about the chemical composition of the Earth

12

Seismic tomography image of present-day mantle

Seismic shear wave speed anomaly Tomographic model S20RTS (Ritsema et al.) O km а CMB b -2.00.0 20 % Shear wave variation Sat AM: Ed Garnero Bull et al. EPSL 2009

Two large scale seismic speed anomalies – below Africa and below central Pacific

Anti-correlation of shear and sound wavespeeds + sharp velocity gradients suggest a **compositional component**

"piles" or "LLSVPs" or "superplumes"

Candidate for an distinct chemical reservoir

Paleomagnetismo & magnetostratigraphia

- Measuring original magnetization in volcanic and sedimentary rocks;
- Discovery of fast (5-10,000 years) inversions of the Earth's magnetic field
- Double structure
 around rift zones

Geochemistry

) Direct rock samples

* surface and bore-holes (max. 12 km);

* mantle rocks brought up by tectonics and **vulcanism**; BUT: <u>POSSIBLE ALTERATION DURING THE TRANSPORT</u>

2) Geochemical models:

composition of direct rock samples + C1 carbonaceous chondrites meteorites + Sun's photosphere;

Bulk Silicate Earth (BSE) models

(several!): medium composition of the "re-mixed" crust + mantle,

i.e., **primordial mantle** before the crust differentiation and after the Fe-Ni core separation;

Primitive-mantle composition

ÜLICH

Progress in Particle and Nuclear Physics 73 (2013) 1–34

Surface heat flux

Surface heat flux

Conductive heat flow from bore-hole temperature gradient;

Total surface heat flux: 46 <u>+</u> 3 TW

Geology and neutrino physics: geoneutrinos

²³⁸U \rightarrow ²⁰⁶Pb + 8 α + 8 e⁻ + 6 anti-neutrinos + 51.7 MeV ²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e⁻ + 4 anti-neutrinos + 42.8 MeV ⁴⁰K \rightarrow ⁴⁰Ca + e⁻ + 1 anti-neutrino + 1.32 MeV

1 TNU = 1 event / 10³² target protons / year Cca 1 event / 1 kton / 1 year with 100% detection efficiency

Geology and neutrino physics: goneutrinos

²³⁸U \rightarrow ²⁰⁶Pb + 8 α + 8 e^{-} + 6 anti-neutrinos + 51.7 MeV ²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^{-} + 4 anti-neutrinos + 42.8 MeV ⁴⁰K \rightarrow ⁴⁰Ca + e^{-} + 1 anti-neutrino + 1.32 MeV

Crust + mantle geo-v signal (U+Th)

1 TNU = 1 event / 10³² target protons / year Cca 1 event / 1 kton / 1 year with 100% detection efficiency

Geoneutrinos: antineutrinos from the decay of ²³⁸U, ²³²Th, and ⁴⁰K in the Earth

Is the mantle chemically homogenous? We do not know!!

Mantle geo- ν signal in the TOMO model

What are neutrinos?

Elementary particles of the Standard Model

- Originally, in the SM neutrinos have exactly zero rest mass;
- Experimental evidences for neutrino oscillations (change of the flavour during the propagation): non-zero mass required!

What are neutrinos?

Elementary particles of the Standard Model

- = very small cross sections;
- Originally, in the SM neutrinos have exactly zero rest mass;
- Experimental evidences for neutrino oscillations (change of the flavour during the propagation): non-zero mass required!

Nobel prize for physics in 2015!

How to detect geoneutrinos?

- liquid scintillator detectors (charged particle produces light)
 (Anti-)neutrinos have low interaction rates, therefore:
- Large volume detectors needed (hundreds tons)
- High radiopurity;
- Underground labs to shield cosmic radiations

POSITRON: Tells us about the energy of the geoneutrino

Latest geoneutrino results

- Non antineutrino background almost invisible!
- \checkmark 5.5 x 10³¹ target-proton year
- ✓ 0-hypothesis @ 3.6×10^{-9}

- 4.9 x 10^{32} target-proton year
- \checkmark 0-hypothesis @ 2 x 10⁻⁶

What do we learn from these results?

- The current experimental results demonstrate that we can measure geoneutrinos and that their rate is consistent with geological expectation;
- Small number of detected geoneutrinos limits geological predictions:

i) The measured Earth radiogenic heat $(U + Th + K) = 33^{+28}_{-20}T$ to be compared with $47 \pm 2 TW$ of the total Earth surface heat flux (including all sources)

ii) first direct indications of geoneutrinos from the mantel

- Several future projects have geoneutrinos among their aims: SNO+ (1 kton) start soon in Canada JUNO (20 kton) in China to start in 2020
 - New interdisciplinary field established: NEUTRINO GEOSCIENCE conference every two years
 - Power of combined analysis and importance of multi-site measurements at geologically different environments

Summary

More we learn about our Earth, more fascinating it turns out to be!

