Neutral η ' Decays with the Crystal Ball

Physics:

- Photoprodution Cross Section
$-\Gamma\left(\eta^{\prime} \rightarrow 2 \gamma\right) / \Gamma(\eta \rightarrow 2 \gamma)$
$-\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0} / \eta^{\prime} \rightarrow 3 \pi^{0}$
- C and CP violating decays

Marc Unverzagt Institut für Kernphysik University Mainz

Frascati, 08.04.2009

η ' Photoproduction

- First goal: determine η ' photoproduction cross section with high precision as for η
- Get normalisations under control
- Examie not well known threshold region

η / η^{\prime}

- Dominant decays:

$$
\begin{array}{ll}
\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-} & \mathrm{BR}=44.6 \% \\
\eta^{\prime} \rightarrow \rho^{0} \gamma & \mathrm{BR}=29.4 \% \text { (including nonresonant } \pi^{+} \pi^{-} \gamma \text {) } \\
\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0} & \mathrm{BR}=20.7 \% \\
\eta^{\prime} \rightarrow \omega \gamma & \mathrm{BR}=3.0 \% \\
\eta^{\prime} \rightarrow 2 \gamma & B R=2.1 \%
\end{array}
$$

- η and η ' are perfectly suited to study symmetries and symmetry violations in QCD
- $\eta^{\prime} \rightarrow \eta{ }^{\prime}=\pi$ and $\eta^{\prime} \rightarrow \pi 0 \pi$ sensitive to $\pi \eta$ and $\pi \pi$ scattering lengths (FSI)
- $\eta / \eta^{\prime} \rightarrow \pi 00$ is sensitive to isospin symmetry breaking due to light quark mass difference $m_{u}-m_{d}$
- Anomalous decays $\eta / \eta^{\prime} \rightarrow 2 \gamma$ probe chiral anomalies of QCD
- PDG lists 7 C or CP violating decays of the η ' meson, 9 for the η
- η and η^{\prime} closely related to each other, they have the same quantum numbers:

$$
\mathrm{I}^{\mathrm{G}}\left(\mathrm{~J}^{\mathrm{PC}}\right)=0^{+}\left(0^{-+}\right)
$$

$\Gamma\left(\eta^{\prime} \rightarrow 2 \gamma\right) / \Gamma(\eta \rightarrow 2 \gamma)$

- From chiral symmetry breaking 8 pseudescalar Goldstone-bosons are expected:

$$
\left(\pi^{+}, \pi^{-}, \pi^{0}, \mathrm{~K}^{+}, \mathrm{K}^{-}, \mathrm{K}^{0}, \overline{\mathrm{~K}}^{0}, \eta_{8}\right) \quad \mathrm{SU}(3) \text {-octet }
$$

- Have the same quantum numbers as respective qq pairs:

$$
(u \bar{d}, d \bar{u},(u \bar{u}-d \bar{d}), u \bar{s}, s \bar{u}, d \bar{s}, s \bar{d},(u \bar{u}+d \bar{d}-2 s \bar{s}))
$$

- 9th state possible, lightest candidate $\eta^{\prime}(958)$:

$$
\eta_{0} \sim(\mathrm{u} \overline{\mathrm{u}}+\mathrm{d} \overline{\mathrm{~d}}+\mathrm{SS}) \quad \mathrm{SU}(3) \text {-singlet }
$$

- Neither η nor η^{\prime} are pure singlet or octet states $\left(\theta=-(20 \pm 2)^{\circ}\right)$:

$$
\begin{aligned}
& \eta=\eta_{0} \sin \theta-\eta_{8} \cos \theta \\
& \eta=\eta_{0} \cos \theta+\eta_{8} \sin \theta
\end{aligned}
$$

- Also scheme with two mixing angles possible and additional gluonic content
- For extraction of mixing angle both decay widths have to be known with high precision

$$
\begin{aligned}
& \eta: \Gamma(\eta \rightarrow \text { all })=(1.30 \pm 0.07) \mathrm{keV} \Gamma(\eta \rightarrow 2 \gamma)=(39.31 \pm 0.20) \% \\
& \eta^{\prime}: \Gamma\left(\eta^{\prime} \rightarrow \text { all }\right)=(0.30 \pm 0.09) \mathrm{keV} \Gamma\left(\eta^{\prime} \rightarrow 2 \gamma\right)=(2.10 \pm 0.12) \%
\end{aligned}
$$

- Theoretically mixing not fully understood. Connection to QCD is missing $\left(\mathrm{N}_{\mathrm{C}}, \mathrm{m}_{\mathrm{q}}\right)$

Determination of $\left(m_{d}-m_{u}\right) / m_{s}$

- Gross, Treiman, Wilczek, Phys. Rev. D 19, 2188 (1979):

$$
\frac{\Gamma\left(\eta^{\prime} \rightarrow 3 \pi^{0}\right)}{\Gamma\left(\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}\right)}=\Phi \cdot\left(\frac{m_{d}-m_{u}}{m_{s}-\hat{m}}\right)^{2} \quad \hat{m}=\frac{1}{2}\left(m_{u}+m_{d}\right)
$$

- Two assumptions:
a) Decay $\eta^{\prime} \rightarrow 3 \pi^{0}$ proceeds entirely via $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$ followed by $\pi^{0}-\eta$ mixing
b) Amplitudes for both decays are constant over phase space
- Borasoy, Meißner, Nißler, Phys. Lett. B 643, 41 (2006):
„Our results clearly indicate that the two underlying assumptions ... are not justified."
- Large coupling of the $\eta^{\prime} \rightarrow 3 \pi$ process to $\rho(770)$ resonance
- Borasoy, Meißner, Nißler, Phys. Lett. B 643, 41 (2006):
„More precise data on η and η ' decays needed in order to eventually clarify this issue."

Slope Parameters

- Energy release small $(\sim 141 \mathrm{MeV})$ in $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$

$$
|M|^{2}=|1+\alpha y|^{2}+c x+d x^{2} \quad \text { x, y }=\text { Dalitz plot variables }
$$

- Dalitz plot variations due to $\eta \pi$ and $\pi \pi$ scattering described by α (linear parametrisation):

GAMS-2000	$\alpha=-0.058 \pm 0.013$	5400 Events
CLEO	$\alpha=-0.021 \pm 0.025$	6700 Events
VES	$\alpha=-0.072 \pm 0.012 \pm 0.006$	7000 Events

- $\operatorname{Im}(\alpha)$ so far consistent with 0
- C-violating decay parameter $\mathrm{c}=0.015 \pm 0.011 \pm 0.014$ (VES with 20 k events)
- d assumed to be 0
- $\eta^{\prime} \rightarrow 3 \pi^{0}$ has only one parameter as in $\eta \rightarrow 3 \pi^{0}$:

$$
|M|^{2}=(1+2 \beta z) \quad \mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}
$$

- Only value so far from GAMS-2000: $\alpha=-0.1 \pm 0.3$ with 40 events

$\pi \pi$ and $\pi \pi$ Scattering Lengths

- $\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}$contributes to $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$ via $\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}$, also for $\eta^{\prime} \rightarrow 3 \pi^{0}$
- Cusp arises at $\pi^{+} \pi^{-}$threshold in $\pi^{0} \pi^{0}$ invariant mass spectrum
- Cabibbo and Isidori as well as Bissegger et al. have developed framework to extract $\mathrm{a}_{0}-\mathrm{a}_{2}$ from $\mathrm{K} \rightarrow 3 \pi$ and $\eta \rightarrow 3 \pi \pi^{0} \pi^{0}$ invariant mass spectrum, but cusp effect in η decay only at 1% level
- Rough estimate from Kubis (HISKP) for cusp strength:

$$
\begin{aligned}
& \mathrm{K}^{+} \rightarrow 3 \pi: 2 \\
& \mathrm{~K}_{\mathrm{L}} \rightarrow 3 \pi: 1 / 3 \\
& \eta \rightarrow 3 \pi: 1 / 3 \\
& \eta^{\prime} \rightarrow \eta 2 \pi: 1.3-1.5
\end{aligned}
$$

- As cusps were measured with high statistics in Kaon decays this it is not to be seen as a highlight to see it in η^{\prime} sector
- Schneider, Kubis, Meißner (soon on arXiv) state an 8% cusp effect in $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0} \rightarrow$ extraction of $\pi \eta$ scattering length is possible, which can not easily be measured in other experiments

C and CP Violating Decays

- In QED and QCD C and CP sysmmetry should be conserved
- η ' well suited to investigate symmetry breaking
- Only weak upper limits for C and CP violating η ' decays exist
- C violating:

$$
\begin{array}{ll}
\eta^{\prime} \rightarrow \eta \mathrm{e}^{+} \mathrm{e}^{-} & \mathrm{BR}<2.4 \cdot 10^{-3} \\
\eta^{\prime} \rightarrow \pi^{0} \mathrm{e}^{+} \mathrm{e}^{-} & \text {BR }<1.4 \cdot 10^{-3} \\
\eta^{\prime} \rightarrow 3 \gamma & \text { BR }<1.0 \cdot 10^{-4}
\end{array}
$$

- CP violating:

$$
\eta^{\prime} \rightarrow 4 \pi^{0} \quad B R<5.0 \cdot 10^{-4}
$$

- CPT violating:

$\eta^{\prime} \rightarrow \pi^{0} \mu^{+} \mu^{-}$	
$\eta^{\prime} \rightarrow \eta \mu^{+} \mu^{-}$	BR $<6.0 \cdot 10^{-5}$
	BR $<1.5 \cdot 10^{-5}$

Not possible with current rates

Glasgow-Mainz-Tagger

- Photon beam produced by Bremsstrahlung at radiator: $\mathrm{e}^{-}+\mathrm{A} \rightarrow \mathrm{e}^{-}+\mathrm{A}+\gamma$
- 353 overlapping scintillators $\rightarrow 352$ channels
- Electrons momentum analysed in magnetic spectrometer
- Energy tagging through $\mathrm{E}_{\gamma}=\mathrm{E}_{0}-\mathrm{E}_{\mathrm{e}}$
- $\Delta \mathrm{E}_{\gamma} \approx 2 \mathrm{MeV}$ at 883 MeV electron energy, $\Delta \mathrm{E} \approx 4 \mathrm{MeV}$ at 1558 MeV electron energy
- Tagging range: 5 to 92% of the electron beam energy

End-Point Tagger

- Suitable magnet from MAMI-A
- Plan: use 1.5 T field $\rightarrow 150 \mathrm{MeV}$ range
- Use cards and PMTs from Lund tagger
- 64 channels $\rightarrow \Delta \mathrm{E}=2.3 \mathrm{MeV}$
- Possibly include end-point tagger in trigger

$\mathrm{B}[\mathrm{T}]$	$\mathrm{E}_{\min }[\mathrm{MeV}]$	$\mathrm{E}_{\max }[\mathrm{MeV}]$
0,7	2,9	74,0
1,0	4,0	104,6
1,2	4,8	128.0
1,5	5,3	151,3
1,8	6,0	180,9

Poles

	$E_{\gamma}[\mathrm{MeV}]$	$E_{e}[\mathrm{MeV}]$
$K \pi \Sigma$	1299.9	208.1
$\omega \pi$	1366.3	141.7
last tagger channel	1445	113
η^{\prime}	1446.6	61.4
$K \wedge(1405)$	1454.0	54
f_{0}	1491.8	16.2
a_{0}	1501.4	6.6

Event Rate Estimate

- Incoming electron beam energy: $\mathrm{E}_{0}=1558 \mathrm{MeV}$
- Photon energy range tagged: $\mathrm{E}_{\gamma}=1450-1550 \mathrm{MeV} \rightarrow \Delta \mathrm{E}_{\gamma}=100 \mathrm{MeV}$
- Photon flux: $\mathrm{N}_{\gamma}=10^{5} \mathrm{~s}^{-1} \mathrm{MeV}^{-1}$
- Number of protons in a $10 \mathrm{~cm} \mathrm{lH}_{2}$ target: $\mathrm{N}_{\mathrm{t}}=4.3 \cdot 10^{23} \mathrm{~cm}^{-2}$
- η^{\prime} photoproduction cross section (average): $\sigma\left(\gamma \mathrm{p} \rightarrow \eta^{\prime} \mathrm{p}\right)=1 \mu \mathrm{~b}$

$$
N_{\eta}=\Delta E_{\gamma} \cdot N_{\gamma} \cdot N_{t} \cdot \sigma\left(\gamma p \rightarrow \eta^{\prime} p\right) \cdot 3600 s \approx 1.5 \cdot 10^{4} / h
$$

- Detection efficiency of $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0} \sim 30 \%$, livetime $\sim 80 \%$ and $\operatorname{BR}\left(\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}\right)=20 \%$ $\rightarrow 700 \operatorname{good} \eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}$ events per hour
- Current highest statistics ~ 7000 events. To increase by one order of magnitude at least 100 hours of beam time.

Summary

- Although, or maybe because, the η ' meson is not a Goldstone boson and to heavy to be treated in $\chi \mathrm{PT}$ in the standard way, it is interesting and important to measure η^{\prime} decays
- Proposed channels: $\eta^{\prime} \rightarrow 2 \gamma$ in combination with $\eta \rightarrow 2 \gamma, \eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0}, \eta^{\prime} \rightarrow 3 \pi^{0}$
- Physic goals: $\eta-\eta$ ' mixing, slope parameters from Dalitz plots, cusps, $\pi \pi$ and $\pi \eta$ scattering lengths
\bullet (Improve upper limits for branching ratios of C and $C P$ violating η^{\prime} decays like $\eta^{\prime} \rightarrow \eta \mathrm{e}^{+} \mathrm{e}^{-}$, $\eta^{\prime} \rightarrow \pi^{0} \mathrm{e}^{+} \mathrm{e}^{-}, \eta^{\prime} \rightarrow 3 \gamma, \eta^{\prime} \rightarrow 4 \pi^{0}$) if possible!!
- New equipment as PbWO_{4} crystals in TAPS and end-point tagger and increased e- energy could improve event rate.
- Proposed η^{\prime} production rate: $1.5 \cdot 10^{4} / \mathrm{h}$, main neutral decay $\eta^{\prime} \rightarrow \eta \pi^{0} \pi^{0} 700 / \mathrm{h}$

