Neutral η' Decays with the Crystal Ball

Physics:

- Photoprodution Cross Section

-
$$\Gamma(\eta' \rightarrow 2\gamma)/\Gamma(\eta \rightarrow 2\gamma)$$

-
$$\eta' \rightarrow \eta \pi^0 \pi^0 / \eta' \rightarrow 3\pi^0$$

- C and CP violating decays

Marc Unverzagt Institut für Kernphysik University Mainz

Frascati, 08.04.2009

Marc Unverzagt

PrimeNet Meeting

Frascati, April 2009

η' Photoproduction

- First goal: determine η' photoproduction cross section with high precision as for η
- Get normalisations under control
- Examie not well known threshold region

η/η'

• Dominant decays:

$\eta' \rightarrow \eta \pi^+ \pi^-$	BR=44.6 %		
$\eta' \rightarrow \rho^0 \gamma$	BR=29.4 %	(including nonresonant 7	τ⁺π⁻γ)
$\eta' \rightarrow \eta \pi^0 \pi^0$	BR=20.7 %		
η'→ωγ	BR=3.0 %		
η'→2γ	BR=2.1 %	$\eta' \rightarrow 3\pi^0$	BR=0.156%

• η and η' are perfectly suited to study symmetries and symmetry violations in QCD

- $\eta' \rightarrow \eta \pi$ and $\eta' \rightarrow \pi \pi$ sensitive to $\pi \eta$ and π scattering lengths (FSI)
- $\eta/\eta' \rightarrow \pi\pi$ is sensitive to isospin symmetry breaking due to light quark mass difference m₁-m₄
- Anomalous decays $\eta/\eta' \rightarrow 2\gamma$ probe chiral anomalies of QCD
- PDG lists 7 C or CP violating decays of the η' meson, 9 for the η
- η and η' closely related to each other, they have the same quantum numbers:

$$I^{G}(J^{PC})=0^{+}(0^{-+})$$

Marc Unverzagt

$\Gamma (\eta \quad ' \to 2\gamma) / \Gamma (\eta \to 2\gamma)$

- From chiral symmetry breaking 8 pseudescalar Goldstone-bosons are expected: $(\pi^+, \pi^-, \pi^0, K^+, K^-, K^0, \overline{K}^0, \eta_8)$ SU(3)-octet
- Have the same quantum numbers as respective qq pairs: (ud, du, (uu-dd), us, su, ds, sd, (uu+dd-2ss))
- 9th state possible, lightest candidate $\eta'(958)$:

 $\eta_0 \sim (u\bar{u} + d\bar{d} + s\bar{s})$ SU(3)-singlet

• Neither η nor η' are pure singlet or octet states ($\theta = -(20\pm 2)^{\circ}$):

 $\eta = \eta_0 \sin \theta - \eta_8 \cos \theta$

 $\eta = \eta_0 \cos\theta + \eta_8 \sin\theta$

- Also scheme with two mixing angles possible and additional gluonic content
- For extraction of mixing angle both decay widths have to be known with high precision $\eta: \Gamma(\eta \rightarrow all) = (1.30\pm0.07) \text{ keV } \Gamma(\eta \rightarrow 2\gamma) = (39.31\pm0.20)\%$ $\eta': \Gamma(\eta' \rightarrow all) = (0.30\pm0.09) \text{ keV } \Gamma(\eta' \rightarrow 2\gamma) = (2.10\pm0.12)\%$
- Theoretically mixing not fully understood. Connection to QCD is missing (N_c, m_q)

Determination of (m_d-m_u)/m_s

• Gross, Treiman, Wilczek, Phys. Rev. D 19, 2188 (1979):

$$\frac{\Gamma(\eta' \to 3\pi^0)}{\Gamma(\eta' \to \eta\pi^0\pi^0)} = \Phi \cdot \left(\frac{m_d - m_u}{m_s - \hat{m}}\right)^2 \qquad \hat{m} = \frac{1}{2}(m_u + m_d)$$

- Two assumptions:
 - a) Decay $\eta' \rightarrow 3\pi^0$ proceeds entirely via $\eta' \rightarrow \eta\pi^0\pi^0$ followed by $\pi^0 \eta$ mixing
 - b) Amplitudes for both decays are constant over phase space
- Borasoy, Meißner, Nißler, Phys. Lett. B 643, 41 (2006): "Our results clearly indicate that the two underlying assumptions ... are not justified."
- Large coupling of the $\eta' \rightarrow 3\pi$ process to $\rho(770)$ resonance
- Borasoy, Meißner, Nißler, Phys. Lett. B 643, 41 (2006): "More precise data on η and η' decays needed in order to eventually clarify this issue."

Slope Parameters

• Energy release small (~141 MeV) in $\eta' \rightarrow \eta \pi^0 \pi^0$

$$|M|^{2} = |1 + \alpha y|^{2} + c x + d x^{2}$$

x, y = Dalitz plot variables

- Dalitz plot variations due to $\eta\pi$ and π scattering described by α (linear parametrisation): GAMS-2000 α =-0.058±0.013 5400 Events CLEO α =-0.021±0.025 6700 Events VES α =-0.072±0.012±0.006 7000 Events
- $Im(\alpha)$ so far consistent with 0
- C-violating decay parameter c=0.015±0.011±0.014 (VES with 20k events)
- d assumed to be 0

•
$$\eta' \rightarrow 3\pi^0$$
 has only one parameter as in $\eta \rightarrow 3\pi^0$:

$$|M|^2 = (1 + 2\beta z)$$
 $z=x^2+y^2$

• Only value so far from GAMS-2000: α =-0.1±0.3 with 40 events

$\pi\pi$ and $\pi\eta$ Scattering Lengths

- $\eta' \rightarrow \eta \pi^+ \pi^-$ contributes to $\eta' \rightarrow \eta \pi^0 \pi^0$ via $\pi^+ \pi^- \rightarrow \pi^0 \pi^0$, also for $\eta' \rightarrow 3\pi^0$
- Cusp arises at $\pi^+\pi^-$ threshold in $\pi^0\pi^0$ invariant mass spectrum
- Cabibbo and Isidori as well as Bissegger *et al.* have developed framework to extract $a_0 a_2$ from $K \rightarrow 3\pi$ and $\eta \rightarrow 3\pi \pi^0 \pi^0$ invariant mass spectrum, but cusp effect in η decay only at 1% level
- Rough estimate from Kubis (HISKP) for cusp strength:

 $K^+ → 3π: 2$ $K_L → 3π: 1/3$ η → 3π: 1/3η' → η2π: 1.3 - 1.5

- As cusps were measured with high statistics in Kaon decays this it is not to be seen as a highlight to see it in η' sector
- Schneider, Kubis, Meißner (soon on arXiv) state an 8% cusp effect in $\eta' \rightarrow \eta \pi^0 \pi^0 \rightarrow$ extraction of $\pi\eta$ scattering length is possible, which can not easily be measured in other experiments

Marc Unverzagt

C and CP Violating Decays

- In QED and QCD C and CP sysmmetry should be conserved
- η' well suited to investigate symmetry breaking
- \bullet Only weak upper limits for C and CP violating η' decays exist
- C violating: $\eta' \rightarrow \eta e^+ e^-$ BR<2.4·10⁻³ $\eta' \rightarrow \pi^0 e^+ e^-$ BR<1.4·10⁻³ $\eta' \rightarrow 3\gamma$ BR<1.0·10⁻⁴
- CP violating: $\eta' \rightarrow 4\pi^0$ BR<5.0.10⁻⁴
- CPT violating:

 $\begin{aligned} \eta' &\to \pi^0 \mu^+ \mu^- & BR < 6.0 \cdot 10^{-5} \\ \eta' &\to \eta \mu^+ \mu^- & BR < 1.5 \cdot 10^{-5} \\ Not possible with current rates \end{aligned}$

Glasgow-Mainz-Tagger

- Photon beam produced by Bremsstrahlung at radiator: $e^+A \rightarrow e^+A + \gamma$
- 353 overlapping scintillators \rightarrow 352 channels
- Electrons momentum analysed in magnetic spectrometer
- Energy tagging through $E_{\gamma} = E_0 E_{e}$
- $\Delta E_{\gamma} \approx 2$ MeV at 883 MeV electron energy, $\Delta E_{\gamma} \approx 4$ MeV at 1558 MeV electron energy
- Tagging range: 5 to 92% of the electron beam energy

End-Point Tagger

Marc Unverzagt

Event Rate Estimate

- Incoming electron beam energy: $E_0 = 1558 \text{ MeV}$
- Photon energy range tagged: $E_{\gamma} = 1450 1550 \text{ MeV} \rightarrow \Delta E_{\gamma} = 100 \text{ MeV}$
- Photon flux: $N_{\gamma} = 10^5 \text{ s}^{-1} \text{ MeV}^{-1}$
- Number of protons in a 10 cm IH_2 target: $N_t = 4.3 \cdot 10^{23} \text{ cm}^{-2}$
- η' photoproduction cross section (average): $\sigma(\gamma p \rightarrow \eta' p) = 1 \mu b$

$$N_{\eta'} = \Delta E_{\gamma'} \cdot N_{\gamma'} \cdot N_t \cdot \sigma (\gamma p \rightarrow \eta' p) \cdot 3600 \, s \approx 1.5 \cdot 10^4 / h$$

- Detection efficiency of $\eta' \rightarrow \eta \pi^0 \pi^0 \sim 30\%$, livetime ~ 80% and BR($\eta' \rightarrow \eta \pi^0 \pi^0$)=20% $\rightarrow 700 \text{ good } \eta' \rightarrow \eta \pi^0 \pi^0$ events per hour
- Current highest statistics ~7000 events. To increase by one order of magnitude at least 100 hours of beam time.

Summary

- Although, or maybe because, the η' meson is not a Goldstone boson and to heavy to be treated in χPT in the standard way, it is interesting and important to measure η' decays
- Proposed channels: $\eta' \rightarrow 2\gamma$ in combination with $\eta \rightarrow 2\gamma$, $\eta' \rightarrow \eta\pi^0 \pi^0$, $\eta' \rightarrow 3\pi^0$
- Physic goals: η - η ' mixing, slope parameters from Dalitz plots, cusps, π and π scattering lengths
- (Improve upper limits for branching ratios of C and CP violating $\eta' \text{ decays like } \eta' \rightarrow \eta e^+e^-$, $\eta' \rightarrow \pi^0 e^+e^-$, $\eta' \rightarrow 3\gamma$, $\eta' \rightarrow 4\pi^0$) if possible!!
- New equipment as PbWO₄ crystals in TAPS and end-point tagger and increased e⁻ energy could improve event rate.
- Proposed η' production rate: $1.5 \cdot 10^4/h$, main neutral decay $\eta' \rightarrow \eta \pi^0 \pi^0 700/h$