Study of the $\eta \to \pi^0 \pi^0 \eta$ decay with the Crystal Ball at MAMI-C

Sergey Prakhov, UCLA

PrimeNet meeting

Frascati, April 8, 2009

Talk outline

- What η ' decays can be studied with the Crystal Ball at MAMI-C
- Study of $\eta \rightarrow \pi^0 \pi^0 \eta \rightarrow 6 \gamma$
- Backgrounds to $\gamma p \rightarrow \eta 'p \rightarrow \pi^0 \pi^0 \eta p \rightarrow 6 \gamma p$: $\gamma p \rightarrow \pi^0 \pi^0 \pi^0 p \rightarrow 6 \gamma p$ (including $\gamma p \rightarrow \Sigma^+ K^0_s \rightarrow \pi^0 \pi^0 \pi^0 p$) and $\gamma p \rightarrow \pi^0 \eta p \rightarrow 4 \pi^0 p \rightarrow 8 \gamma p$
- Final remarks

η ' decays with the Crystal Ball at MAMI-C

- Neutral decay modes of η ' are poorly known and can be studied with the CB
- $\eta \rightarrow \pi^0 \pi^0 \pi^0$ and $\eta \rightarrow \gamma \gamma$ decay modes with small BR have large background when η is produced in $\gamma p \rightarrow \eta$ p
- Main focus is on $\eta \to \pi^0 \pi^0 \eta \to 6\gamma$ which allows to study $\pi \eta$ scattering

Selection of $\gamma p \rightarrow \eta 'p \rightarrow \pi^0 \pi^0 \eta p \rightarrow 6 \gamma p$ events

- Incident-photon energy is unknown as the maximum tagging energy is 1402 MeV for 1508-MeV MAMI-C beam and 1446 MeV for 1557-MeV beam; the γ p $\rightarrow \eta$ 'p threshold is 1.45 GeV
- Detection of the recoil proton is required to improve the resolution and background suppression
- kinematic fit is used to select $\eta \rightarrow \pi^0 \pi^0 \eta \rightarrow 6\gamma$ events
- background from $\gamma p \rightarrow \pi^0 \pi^0 \pi^0 p \rightarrow 6 \gamma p$ is suppressed by the comparison of the probabilities for both the hypotheses
- further suppression of γ p $\rightarrow \pi^0$ η p $\rightarrow 4$ π^0 p $\rightarrow 8$ γ p background by tightening the CL cut
- final acceptance for $\eta \to \pi^0 \pi^0 \eta \to 6\gamma$ events is ~30%
- Rate of taking good events $\eta \rightarrow \pi^0 \pi^0 \eta \rightarrow 6 \gamma / \eta \rightarrow 3 \pi^0$ is $\sim 1/1000$ for 1508-MeV beam and $\sim 3.5/1000$ for 1557 MeV

Invariant mass of $\pi^0 \pi^0 \eta$ for $\gamma p \rightarrow \pi^0 \pi^0 \eta p \rightarrow 6 \gamma p$ candidates for 1508-MeV beam (15% background in $\eta' \rightarrow \pi^0 \pi^0 \eta$)

The $\eta \to \pi^0 \pi^0 \eta$ Dalitz plot can be described by $M^2=A(|1+\alpha Y|^2+cX^2)$. GAMS2000: $\alpha = -0.058\pm0.013$ and $c=0.00\pm0.03$ based on 5K events

Process $\gamma p \rightarrow \pi^0 \pi^0 \pi^0 p \rightarrow 6 \gamma p$ contributes to the $\eta' \rightarrow \pi^0 \pi^0 \eta \rightarrow 6 \gamma$ background if m($\pi^0 \pi^0 \pi^0)$ is close to the η' mass

Background process $\gamma p \rightarrow \pi^0 \eta p \rightarrow 4 \pi^0 p$ can be understood via measuring $\gamma p \rightarrow \pi^0 \eta p \rightarrow 4 \gamma p$

Final remarks

- Present data-taking rate for η ' at MAMI-C is too small to have sufficient statistics in the $\eta \to \pi^0 \pi^0 \eta$ Dalitz plot: ~4K events collected in 2007 with 1508-MeV beam; ~10K expected in 2009 with 1557-MeV beam
- Tagging the beam energy is needed to improve the resolution and the signal-to-background ratio