

Current status $\eta \to \pi^+\pi^-\pi^0$ decay with WASA at COSY

Patrik Adlarson

Introductio

Experimental Resu

Monte Carlo with kinematical fit

Current status $\eta \to \pi^+\pi^-\pi^0$ decay with WASA at COSY

Patrik Adlarson

Department of Physics and Astronomy University of Uppsala for the WASA at COSY collaboration

 $\eta \rightarrow 3\pi$ meeting, April 8, 2009

Current status $\eta \to \pi^+\pi^-\pi^0$ decay with WASA at COSY

Patrik Adlarson

Introduction

Motivation
Contemporary studies $\eta \to \pi^+\pi^-\pi^0$ with WASA

Experimental Result

Monte Carlo wit kinematical fit

Introduction

 η decays to $\pi\pi\pi$ via isospin violating strong interactions proportional to m_d-m_u difference (e.m. effects are small). Many experiments have been made on $\eta\to 3\pi^0$. This talk focuses on $\eta\to\pi^+\pi^-\pi^0$.

Figure. $\eta \to \pi^+\pi^-\pi^0$ at tree level (Current Algebra).

The decay rate is expanded around X = Y = 0 in Dalitz plot:

$$\frac{d\Gamma}{dXdY} \propto |A(X,Y)|^2 \propto 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + \dots$$
(1)

$$X = \sqrt{3} \frac{T_{+} - T_{-}}{Q_{n}}, \ Y = \frac{3T_{0}}{Q_{n}} - 1$$
 (2)

$$Q_{\eta} = T_{+} + T_{-} + T_{0} \tag{3}$$

 $\begin{array}{c} \text{Current status} \\ \eta \to \pi^+\pi^-\pi^0 \\ \text{decay with WASA at} \\ \text{COSY} \end{array}$

Patrik Adlarson

Introduction Motivation Contemporary studies $\eta \to \pi^+\pi^-\pi^0$ with WASA

Experimental Result

Monte Carlo wi

The Dalitz plot parameters b and f are thus far difficult to reproduce in any theoretical approach.

KLOE- result	Current Algebra
$\begin{array}{l} a = 1.090 \pm 0.005^{+0.008}_{-0.019} \\ b = 0.124 \pm 0.006 \pm 0.010 \\ d = 0.057 \pm 0.006^{+0.007}_{-0.016} \\ f = 0.14 \pm 0.01 \pm 0.02 \end{array}$	$a \approx 1$ $b=a^2/4$ d=0 f=0

Table: Dalitz plot parameters for KLOE cf. CA result

Current status $\eta \to \pi^+\pi^-\pi^0$ decay with WASA at

Patrik Adlarson

Introduction Motivation Contemporary studies $\eta \to \pi^+\pi^-\pi^0$ with WASA

Experimental Result

Monte Carlo wit

$\eta \to \pi^+\pi^-\pi^0$ with WASA-at-COSY

 $pd \rightarrow {}^{3}He\eta$ at beam energy 1.0 GeV. 4 weeks run in fall 2008. Next data taking 8 weeks in summer 2009.

- Good signal to background ratio
- Simple unbiased trigger (3He in FD, max $\theta_{He} \approx 10^{\circ}$), absolute br. ratios.
- Previous experience from CELSIUS/WASA.

Bilger et al., Ph. Rev. C, 65, 044608 (left picture)

WASA-at-COSY detector setup

 $\begin{array}{c} \text{Current status} \\ \eta \to \pi^+\pi^-\pi^0 \\ \text{decay with WASA at} \\ \text{COSY} \end{array}$

Patrik Adlarson

Introduction

Contemporary studie

 $\eta \to \pi^+\pi^-\pi^0$ with WASA

Experimental Resu

Monte Carlo w

Estimation of η events.

Current status $\eta \to \pi^+\pi^-\pi^0$ decay with WASA at

Patrik Adlarson

Introductio

Experimental Result

Monte Carlo with kinematical fit

Approximately 10 million η on disk. Here some preliminary analysis from approximately 70 hours of data taking or 92 runs is shown.

Patrik Adlarson

Introduction

Experimental Result

Monte Carlo wi kinematical fit Correction tables have been applied. Events have been rejected which do not fulfill these criteria:

- ullet 30.5° $\leq heta_{\pi^\pm} \leq 150^\circ$, 24° $\leq MDC_{ heta} \leq 159^\circ$
- ullet 22.5° $\leq heta_{\gamma} \leq 166^{\circ}$, 20° $\leq extit{SEC}_{ heta} \leq 169^{\circ}$
- ullet $p_{corr,\pi^\pm} \leq 450~{
 m MeV/c}$

MM v IM plots

Current status $\eta o \pi^+\pi^-\pi^0$ decay with WASA at COSY

Patrik Adlarson

Introduction

Experimental Result

Monte Carlo with kinematical fit

 $MM(^3He)$ versus $IM(\pi^+\pi^-\pi^0)$ with projection on MM-axis.

MM v IM plots

 $\begin{array}{c} \text{Current status} \\ \eta \to \pi^+\pi^-\pi^0 \\ \text{decay with WASA at} \\ \text{COSY} \end{array}$

Patrik Adlarson

Introductio

Experimental Result

Monte Carlo with kinematical fit

 ${\rm MM}(^3He)$ versus ${\rm IM}(\pi^+\pi^-\pi^0)$ with projection on IM-axis.

Current status $\eta \to \pi^+\pi^-\pi^0$ decay with WASA at

Patrik Adlarson

Introductio

Experimental Result

Monte Carlo w kinematical fit A cut that may be used to separate chance coincidences from true events: $MM(^3He\pi^+\pi^-)$ vs $IM(\gamma\gamma)$

The cut:
$$50 \le MM(^3He\pi^+\pi^-) \le 250$$
 and $100 \le IM(\gamma\gamma) \le 200$

$\mathrm{MM}(^3He)$ v $\mathrm{IM}(\pi^+\pi^-\pi^0)$ after cut

 $\begin{array}{c} \text{Current status} \\ \eta \to \pi^+\pi^-\pi^0 \\ \text{decay with WASA at} \\ \text{COSY} \end{array}$

Patrik Adlarson

Introduction

Experimental Result

Monte Carlo with kinematical fit

This gives the result in the MM(3He) versus IM($\pi^+\pi^-\pi^0$) sc. plot:

${\rm MM}(^3He)$ v ${\rm IM}(\pi^+\pi^-\pi^0)$ after cut

 $\begin{array}{c} \text{Current status} \\ \eta \to \pi^+\pi^-\pi^0 \\ \text{decay with WASA at} \\ \text{COSY} \end{array}$

Patrik Adlarson

Introductio

Experimental Result

Monte Carlo with kinematical fit

This gives the result in the MM(3He) versus IM($\pi^+\pi^-\pi^0$) sc. plot:

MC studies from $10^6~pd ightarrow {}^3He\eta$ events

 $\begin{array}{c} \text{Current status} \\ \eta \to \pi^+\pi^-\pi^0 \\ \text{decay with WASA at} \\ \text{COSY} \end{array}$

Patrik Adlarson

Introductio

Experimental Result

Monte Carlo w kinematical fit

Type	nr of events	Br. ratio (%)	Acc. (%)
He detected	694 000	-	69.4
$\eta \to \gamma \gamma$	189 000	39.3	48.1
$\eta \to \pi^+\pi^-\pi^0$	46 800	23.0	20.3
$\eta o \pi^+\pi^-\pi^0$			
w. $MM(He\pi^+\pi^-)$ v			
$IM(\gamma\gamma)$ - cut	36 300	23.0	15.8
	36 300	23.0	15.8

Table: Number of events from MC studies including acceptance and branching ratios.

Experimental results in comparison with expected from MC estimates

Current status $\eta \to \pi^+\pi^-\pi^0$ decay with WASA at COSY

Patrik Adlarson

Introduction

Experimental Result

Monte Carlo w kinematical fit

Type of distribution	nr of events	nr of expected events from MC
MM calculated for He $\eta \to \gamma \gamma$ $\eta \to \pi^+\pi^-\pi^0$ candidates $\eta \to \pi^+\pi^-\pi^0$ w. MM($He\pi^+\pi^-$) v	1.73 · 10 ⁶ 374 000 42 600	- 472 000 116 400
$IM(\gamma\gamma)$ - cut	20 300	90 600

Table: Number of events in experimental plot in comparison with expected number from MC estimates.

Current status $\eta o \pi^+\pi^-\pi^0$

Patrik Adlarson

Introductio

Experimental Result

Monte Carlo with kinematical fit

Kinematical Fit MC studies

Kinematical fit after simulation of detector resolution. Only 4-momentum constraints.

Resolution on $IM\gamma\gamma$ improved from 43.4 to 16.2 MeV FWHM. Resolution on $IM3\pi$ improved from 54.0 to 8.9 MeV FWHM.

 $\begin{array}{c} {\rm Current\ status} \\ \eta \ \to \ \pi^+\pi^-\pi^0 \\ {\rm decay\ with\ WASA\ at} \\ {\rm COSY} \end{array}$

Patrik Adlarson

Introductio

Experimental Resul

Monte Carlo with kinematical fit Kinematical fit on experimental data:

- errors are not the same as $MC \Rightarrow$ crude estimates:
 - Momentum Errors: $\pi^{\pm}_{\rm exp}, \gamma_{\rm exp} = 2 \cdot \pi^{\pm}_{\rm MC}, 2 \cdot \gamma_{\rm MC}$
 - $\theta_{\gamma}, \phi_{\gamma} = 4^{\circ}$
- ullet cut on pdf $\leq 1~\%$

Conclusion: Errors need to be known better.

Current status

decay with WASA at COSY

Patrik Adlarson

Introduction

Experimental Resu

Monte Carlo with kinematical fit

Outlook

- ullet 4 weeks of data taking with 10 million η on disk
- Work to improve resolutions and efficiency
- Work to understand the errors better
- Additional statistics from 8 weeks of data taking, summer 2009.

 $\begin{array}{c} \text{Current status} \\ \eta \to \pi^+\pi^-\pi^0 \\ \text{decay with WASA at} \\ \text{COSY} \end{array}$

Patrik Adlarson

Introduction

Experimental Resu

Monte Carlo with kinematical fit

Thank You for your attention.