Study of the $\eta \rightarrow 3\pi^0$ decay with the Crystal Ball at MAMI-C

Sergey Prakhov, UCLA

PrimeNet meeting

Frascati, April 8, 2009

Talk outline

- Physical motivation for study of $\eta \rightarrow 3\pi^0$
- Current status on the experimental and theoretical study of the $\eta \rightarrow 3\pi^0$ decay
- Reproduction of the experimental conditions with the Monte Carlo simulation
- Result for the $\eta \rightarrow 3\pi^0$ slope parameter from the MAMI-C data
- A cusp-like structure in the $\pi^0\pi^0$ invariant mass of the $\eta \rightarrow 3\pi^0$ decay
- Final remarks

Physical motivation for study of $\eta \rightarrow 3\pi^0$: tests of χ PTh calculations

- A($\eta \to 3\pi^0$) ~ (m_d-m_u)(1+ α z), $\Gamma(\eta \to 3\pi^0)$ ~ (m_d-m_u)²(1+ 2α z), $z = 6/(m_{\eta} - 3m_{\pi^0})^2 \sum_i (E^i_{\pi^0} - m_{\eta}/3)^2 = \rho^2/\rho^2_{max}$; precise measurement of α is required for a better calculation of $\Gamma(\eta \to 3\pi^0)$, needed for the m_u-m_d difference
- Search for a cusp in $m(\pi^0\pi^0)$ in the vicinity of the $\pi^+\pi^-$ threshold in the light of the recent $K^+\to\pi^+\pi^0\pi^0$ results providing a test of the χ PTh prediction for the S-wave scattering length combination a0-a2

Variable $z=\rho^2/\rho^2_{max}$ reflects the density distribution along the radius of the $\eta \to 3\pi^0$ Dalitz plot

Experimental results and theoretical calculations for α

```
• Experimental results for \alpha: GAMS2000 (1984): -0.022±0.023 CBarrel at LEAR (1998): -0.052±0.017±0.010 CBall at AGS (2001): -0.031±0.004 KLOE (prelim.2005): -0.013±0.004±0.005 CELSIUS-WASA (2007): -0.026±0.010±0.010 KLOE (prelim.2007): -0.027±0.004±0.005 CBall at MAMI-B (2009): -0.032±0.002±0.002 CBall at MAMI-C (2009): -0.032±0.003
```

- Calculations for α : J.Kambor et al. (1996): -0.007 or -0.0014 B.Borasoy et al. (2005): -0.031±0.003 J.Bijnens et al. (2007): 0.013±0.032
- cusp in m($\pi^0\pi^0$) appears to be very small

Selection of $\eta \rightarrow 3\pi^0$ events at CB@MAMI-C

- reaction γ p $\rightarrow \eta$ p $\rightarrow 3\pi^0$ p at MAMI-C: $E_{\gamma} = 707-1402$ MeV is tagged, CB+TAPS $\rightarrow 30\%$ average acceptance, 80% of the protons are detected
- kinematic fit of γ p $\rightarrow \eta$ p $\rightarrow 3 \pi^0$ p $\rightarrow 6 \gamma$ p at the 2%CL is used to identify $\eta \rightarrow 3 \pi^0$ events
- Background contributions: random coincidences in the tagger ~8%, $\gamma p \rightarrow 3 \pi^0 p$ from 0.4% to 4%, empty target from 1% to 4%

Production of $\eta \rightarrow 3\pi^0$ events

Agreement between the data and MC for $\eta \rightarrow 3\pi^0$ events; Resolution in the invariant mass (6 MeV) and in parameter z

Angular distribution for γ p $\rightarrow \eta$ p and its acceptance

Statistics used for the result published in PRC79(2009) (3 runs: 04.07, 06.07, 07.07; 26.6M $_{\eta}$'s produced)

Full statistics collected with the CB at MAMI-C in 2007

The $3\pi^0$ invariant mass depending on the beam-energy range for $\gamma p \rightarrow 3\pi^0 p$ events

Stability of results for the $\eta \rightarrow 3\pi^0$ slope parameter depending on experimental conditions and selection cuts $\rightarrow \alpha = -0.032 \pm 0.003$

Test	Cuts	Statistics	α	χ^2 /ndf
1	CL=2%	3.06M	-0.0322±0.0012	31.4/18
2	CL=5%	2.78M	-0.0326±0.0013	32.2/18
3	CL=10%	2.50M	-0.0329±0.0014	30.0/18
4	CL=20%	2.11M	-0.0326±0.0015	25.9/18
5	CL=2%, E γ <1.1GeV	2.76M	-0.0320±0.0013	26.9/18
6	CL=2%, E γ <0.9GeV	2.18M	-0.0321±0.0015	20.2/18
7	CL=2%, Ecb<0.42GeV	2.83M	-0.0316±0.0013	29.1/18
8	CL=2%, Ecb<0.47GeV	2.60M	-0.0319±0.0013	30.7/18
9	CL=2%, $\cos \theta_{\eta}$ <0.	1.73M	-0.0334±0.0017	23.5/18
10	CL=2%, $\cos \theta_{\eta} > 0$.	1.32M	-0.0312±0.0019	14.5/18
11	CL=2%, 7cl	2.39M	-0.0323±0.0014	26.4/18
12	CL=2%, 6cl	0.663M	-0.0292±0.0027	22.0/18

Looking for a cusp-like structure in m($\pi^0 \pi^0$)

Bissegger et al. Phys.Lett.B 659 (2008) 576 A($\eta \to 3\pi^0$) = $u_0 + u_1 z$; A($\eta \to \pi^+ \pi^- \pi^0$) = $v_0 + v_1 y + v_2 y^2 + v_3 x^2$; tried $v_0/u_0 = -1/3(+1/3)$ and $v_0 = 1$, $v_1 = -0.52*1.25$, $v_2 = -0.063$, $v_3 = 0.025$, $\alpha = -0.038$ from $\eta \to \pi^+ \pi^- \pi^0$ of KLOE

Influence of the cusp structure on the z distribution

Experimental Dalitz plot for $\eta \rightarrow 3\pi^0$

Final remarks on the $\eta \rightarrow 3\pi^0$ analysis

- "Standard" analysis of $\eta \rightarrow 3\pi^0$ decays from the CB data at MAMI-C yields $\alpha = -0.032 \pm 0.003$, confirming the PDG value, $\alpha = -0.031 \pm 0.004$.
- A cusp-like structure in $m(\pi^0\pi^0)$ from $\eta \to 3\pi^0$ decays is seen on the level $\leq 1\%$. More statistics is needed to understand the structure better.
- Neglecting the $\eta \to \pi^+ \pi^- \pi^0$ contribution in the $\eta \to 3\pi^0$ analysis can results in a biased value for α .
- Joint analysis of the $\eta \to 3\pi^0$ and $\eta \to \pi^+\pi^-\pi^0$ decays is needed for more reliable results on their parameters.