Electron scattering from foils at 13-20 MeV

Bruce Faddegon and José Ramos-Méndez University of California San Francisco

Electron benchmark

$$D(\theta) = \int \Phi(\theta, E) \frac{L(E)}{\rho} dE$$

Benchmark electron in-air fluence profiles from scattering foils used in radiotherapy

Benchmark set-up

Electron scatter measurement

C Ross, M McEwen, A McDonald, C Cojocaru, B Faddegon, "Measurement of multiple scattering of 13 and 20 MeV electrons by thin foils, "Med. Phys. 35(9): 4121-4131, 2008

Electron scatter measurement

Published benchmarks - 2009

13 MeV

BA Faddegon, I Kawrakow, Y Kubyshin, J Perl, J Sempau, L Urban, "Accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for simulation of electron scatter in external beam radiotherapy," Phys. Med. Biol. 54:6151-6163, 2009

Published benchmarks - 2009

13 MeV 20 MeV 2 EGSnrc EGSnrc Ó T 0 75.76.-A**~** -1 -2 -3 1/e,exp 1/e,exp Geant4 2 ieant4 $\boldsymbol{\theta}^2$ - θ² 1/e,calc 1/e,calc П -2 -2 O Be O Be -3 -3 С $\boldsymbol{\theta}^2$ С $\boldsymbol{\theta}^2$ Al Ó PENELOPE PENELOPE Ti 4 4 Cu 3 3 Та Ó Ľa 2 2 Ŧ Au 0 -1 10 20 30 40 50 60 70 10 2030 4050 60 70 0 0 θ^2 θ^2 (degrees²) (degrees²) 1/e,exp 1/e,exp

Latest results: Geant4 version 10.3.b0 Fluence Profiles

Latest results: Geant4 version 10.3.b0 Characteristic angle

Faddegon result is previously published benchmark (2009) for Geant4 v.9.2

Discussion

- The Beryllium and Carbon materials require further tuning in the electromagnetic options of the Goudsmit-Saunderson model with the current Geant4.10.3.b01.
- The Penelope physics allowed obtain differences in the characteristic angle with respect to the measured data within 2% one standard deviation.

Conclusions

- Choice of benchmarks from measured set:
 - All target materials (Be, C, Al, Ti, Cu, Ta, Au)
 - Foil thickness with characteristic angle ~5 degrees
 - 13 MeV and 20 MeV
- Regression testing tolerance: Verify calculation with new versions of Geant4 has same accuracy within 2 standard deviations calculation precision or higher accuracy (matches measurement better)