Comparison of Geant4 electromagnetic physics for a gamma radiotherapy linac

Pedro Arce CIEMAT, Madrid

- Outline:
- Method of adjusting MC to data
- CPU optimization
 - Geometry
 - Physics cuts
 - Bremsstrahlung splitting
 - Reusing particles that traverse linac
- Comparison of EM models
 - Comparison of brems. angular dist.
 - Comparison of Livermore, Penelope and Standard

RT linac simulation:

Details of the machine are not completely known:

- © Geometry from manufacturer
- ⊗ Beam parameters unknown
 - Energy: ~ 6 MeV
 - Beam intensity profile (assume 2D XY Gaussian): few mm FWHM
 - Beam dispersion: < few degrees
- ➢ We need a method to find beam parameters: follow AAPM TG 53
 - ✓ Match data and Monte Carlo dose profiles in water, for different jaws apertures fields: 5X5 cm, 10x10 cm, 15x15 cm, 20x20 cm
 - Percentage Depth Dose: dose along beam central axis
 - Cross profiles: beam transverse profiles at different depths: 1.4 cm (maximum), 10 cm, 20 cm, 30 cm

RT linac simulation: Optimizing beam parameters

METHOD:

- 0. CPU optimization
- 1. Check beam is centered and measurements are horizontal
- 2. Match beam E to PDD
- 3. Match **beam width** to X-profiles
- 4. Match **beam E** again if PDD has worsen
- Consider E fix: Dose is almost independent of E dispersion
- Beam angle dispersion: Dose is almost independent of it

Precise determination of beam parameters:

- Wide set of dose distributions (20)
- High number of measuring points (each 2 mm)
- High MC statistics (<1 % statistical error)</p>

(~20,000 days of CPU)

CPU optimization: Geometry

Do not simulate linac shield

(surrounding upper linac parts) ✓ Check it has no effect

© Save 4.5 %

Phantom voxelization:

Only 2D, not 3D, as data is taken only along two directions

© Save a factor 3

- ➢ No factor 2 gain if 3D, because
- X Y symmetry is not perfect

CPU optimization: Physics cuts at linac

Production thresholds:

Make a region for each linac component ✓ Use GAMOS tool for automatic optimization

PRODUCTION THRESHOLD (mm)			
GEOMETRY REGION	e- from ionization	Gamma from bremsstrahlung	
Target	1.	10.	
Primary Collimator	0.1	10.	
Flattening filter	1.	10.	
Monitor	1.	10.	
Shielding	1.	10.	
Jaws	0.3	1.	
Outside linac components	10.	10.	

© CPU time w.r.t. default 0.1 mm: Save 31 % Opplying to processes 41 % **Minimal kinetic energy user limits:**

✓ Use GAMOS tool for automatic optimization Gain is negligible Pedro Arce

DICOM reading

CPU optimisation: Physics cuts in phantom

Production thresholds:

✓ Use GAMOS tool for automatic optimization

Phantom Cut (mm)	DOSE / DOSE 0.001 mm CUT (%)	CPU Time gain (%)
0.01	0.0	0
0.1	0.46	23
0.25	1.35	27
0.5	6.4	29
1	14	33
2.5	32	38
5	53	43

Minimal kinetic energy user limits:

- ✓ Use GAMOS tool for automatic optimization
- ⊖ Gain is negligible

CPU optimisation: Bremsstrahlung splitting

✤ 3 bremsstrahlung splitting techniques available in GAMOS

- □ Based on Geant4 general biasing
 - > Added: fully managed by user commands
 - Added: biasing operator only affects selected particle / processes
- 1. Uniform Bremsstrahlung Splitting

2. Directional Bremsstrahlung Splitting

- UBS + User selects XY plane at a given Z position: bremss. gammas not directed towards this plane killed by Russian roulette
- 3. Equal Weight Bremsstrahlung Splitting
 - DBS + Reweight all particles created by any process, so that all particles reaching the phantom have the same weight (based on EGSnrc DBS)

CPU optimisation: Bremsstrahlung splitting

Optimize splitting number (for the 3 techniques):

Bigger N

- © bigger fraction of time in gammas, less in e-'s
- \otimes bigger particle weight differences \rightarrow bigger error
- ⊗ may create artifacts (inadequate sampling of phase space)

Efficiency = 1 / (T σ^2)

T = CPU time

 σ = dose error = average error in voxels with dose > 50 % maximum dose (AAPM TG 53)

Check artifacts are not too big:

 Chi2 comparison dose in half-right vs. half-left and check p-value is not too small

OPTIMAL: EWBS with N = 100 : save a factor 2.5

Only very few particles traverse the full linac:

- \otimes ~1.6/1000 for a 10x10 field (without splitting)
- ⊗ With EWBS and N_SPLIT=100, time in linac is 100X time in phantom
- ➡ Reuse particles that reach phantom
- □ Usually this is done storing in a phase space file the particles that reach a XY plane close to the phantom, and reading them back in a second job
- ✓ GAMOS allows particle reusing in a single job, without wasting time writing/reading a file
 - \checkmark Option to mirror in XY to diminish artifacts

With 1E9 initial particles, 1.6E8 reach the phantom = 64,000 per voxel ⇒ **Reusing 100 times** seems to be OK for not producing artifacts

EM physics models comparison: Method

Compare EM physics packages

- Standard
- Livermore
- Penelope
- Option3 and Option4 for Standard (supposed to be more precise)
- Change bremsstrahlung angular distributions for Standard and Livermore
 - DipBust
 - Tsai
 - Koch-Motz 2BS
 - ✤ Koch-Motz 2GN
- For each case: optimize beam energy in steps of 0.25 E with beam width 0 and beam angle 0 (bigger beam widths and angles always worsen the fit)
 - Optimize matching of the 20 distributions

geant4.10.02.p02

DICOM reading

EM physics: 3 EM models: PDD

10x10 cm field

Pedro Arce

DICOM reading

EM physics: 3 EM models: X-profiles

20x20 cm field

Pedro Arce

DICOM reading

EM physics: Livermore: brems. angular dist.

20x20 cm field

Best: Koch-Motz 2BS (Livermore & Standard)

VS, September 2016

Pedro Arce

EM physics: 3 EM models: PDD 5x5 field

5x5 cm field

Pedro Arce

DICOM reading

EM physics: 3 EM models: PDD 10x10 field

10x10 cm field

15x15 cm field

Pedro Arce

DICOM reading

20x20 cm field

Pedro Arce

DICOM reading

EM physics: 3 EM models: X-prof 5x5 field

5x5 cm field

Pedro Arce

DICOM reading

EM physics: 3 EM models: X-prof 10x10 field

10x10 cm field

Pedro Arce

DICOM reading

21st Gean4 WS, September 2016

Ciemat

MINISTERIO DE CIENCIA

EM physics: 3 EM models: X-prof 15x15 field

15x15 cm field

Pedro Arce

DICOM reading

EM physics: 3 EM models: X-prof 20x20 field

20x20 cm field

Pedro Arce

DICOM reading

Conclusions

A VARIAN 6 MeV gamma radiotherapy linac has been simulated with precision

• PPD and X-profile experimental data at 4 fields and 4 depths have been compared with MC

First, CPU optimization has been done

- ✓ Geometry
- ✓ Production cuts and user limits
- ✓ Bremsstrahlung splitting
- $\checkmark\,$ Reusing of particles that reach phantom

Agreement with data is reasonable

Koch-Motz (specially 2BS) give much better results

Livermore gives best results, Standard Slightly worse than Penelope

Pedro Arce