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Outline	

•  Overview	of	field	propaga(on	in	Geant4	
•  New	methods	in	10.3-beta	

–  Integrated	several	2015	developments		

•  New	developments	

–  The	Bulirsch-Stoer	method	

– Using	interpola(on	to	speed	up	intersec(on	with	
volume	boundary	

– Verifica(on	
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Field	propaga(on	in	Geant4	

•  Uses	Runge-KuZa	
integra(on	with	adap(ve	

step	size	control	

1.	d	<	deltaChord	

2.	ΔB	<	deltaOneStep	

•  Locates	boundary	
intersec(on	using	

itera(ve	intersec(ons	of	

chords	 Un(l	|F	–	E|	<	deltaIntersec(on		
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TEXT Integra(ng	

efficiently	

�  Given	a	detector�s	field	B(x,y,z)	[or	B+E	]	we	
need	to	integrate	the	trajectory	of	each	track,	

taking	care	

▸  to	stay	within	a	rela(ve	accuracy		ε	

▸  to	be	fast	-	using	as	few	calls	as	possible	to	the	field	
method	

�  Typically	choose	Runge-KuZa	methods	

▸  No	history.	Ability	to	adjust	step	size	

|Δx|	<	ε		s	

|Δp|	<	ε		p	

Δ|p|	~	0	

Correct	

Es(mate	p5	

Es(mate	x4	

s	(curve	length)	

p	

Es(mate	x5,		

Es(mate	p4	



TEXT Embedded	Runge-

KuZa	methods	

�  “Integrate”	dy/dx	=	F(x,	y)	from	x0	to	x0+h	

�  Uses	evalua(ons	of	F(x,	y):	

▸  fi	=	F(	x0	+	ai	h	,		y0	+	h	Σj<i	bij	fj	)	
▸  yes(m(x0	+	h)	=	Σi	ci	fi	
�  Each	method	has	its	‘tableau’	of	ai,	bij,	ci	

�  Key	Parameters	of	an	RK	method:	

▸  Number	of	‘stages’	=	number	of	evalua(ons	of	f()	

▸  ‘Order’	=	the	expected	scaling	of	the	error	~	hN	

▸ Embedded	method	=	2nd	‘line’	to	es(mate	

error	

ai	 bij	

cj	

c�j	

y�(x0	+h)	=	Σi	c�i	fi	

Δy	=	Σi	(c’i-ci)	fi	

	yRBS3=2f1/9	+	f2/3	+	4f3/9	

f1	=	F(x0	,		y0	)	
f2	=	F(	x0	+	a2	h	,		y0	+	h	b21	fj	)	

f3	=	F(	x0	+	a3	h	,		y0	+	h	b31	f1	+	h	b32	f2)	



TEXT 

Geant4	steppers	

�  �Classical	RK4�	=	original	4th	order	method,	4	stages	

▸  Error	es(mate	from	breaking	step	in	two	=>	11	eval.	

�  Embedded	methods	provides	built-in	error	es(mate	

▸  Cash-Karp	(1990)	-	uses	difference	of	5th	&	4th	order	method,	six	stages	
=	6	evalua(ons	of	deriva(ve	

�  AtlasRK4/NystromRK4:	3	field	evalua(ons	+	evalua(on	of	error	using	

numerical	es(mate	of	4th	deriva(ve	-	restricted	to	B-fields	

�  Helix	-	for	constant	field	

�  Lower	order	RK	methods	for	short	steps,	and/or	lower	accuracy	
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TEXT

SELECTED NEW METHODS

Name / Authors Order Stages Error #Evaluations FSAL Interpolation Extra

Estim. Failed Good (Order) evaluations

Classical 4 4 N 11 11 No No -

CashKarp 5 6 Y 5 5 No No -

Dormant-Prince 5 
“DoPri5” 5 7 Y 6 5 Yes Yes - 2 ways 

(4/5) 0/2

Bogacki-
Shampine45 5 8 Y 7 6 Yes Yes 2

Dormand-Prince8 8 13 Y 12 11 No No

Verner78 ‘efficent’ 8 13 Y 12 12 No Yes - 2 
(7 / 8) 4/8



(high)	(low)	

Somanth	Banerjee	(GSoC	2015)	



Integra(on	of	new	steppers	

•  Now	integrated	in	Geant4	10.3	beta:	
–  BogackiShampine	2/3	and	4/5	

– DormandPrince	4/5	(7	stages	=	evalua(ons)	

•  A	few	RK	tableaus	not	integrated	
–  Expect	‘very	high’	(>6)	order	Verner	methods	

•  FSAL	&	Interpola(on	available	–	but	not	used		
–  Full	‘move’	to	using	FSAL	‘simple’	(simpler)	

•  Issue	with	interpola(on	of	DormandPrince	4/5	

–  Fixed	recently	
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6 computed points in 
a circular trajectory

Calling 100 times 
between each pair of 
points, to give 
“Dense” output

Interpolated result 

Somanth Banerjee (GSoC 2015)



Alterna(ve	integra(on	methods	

and	u(lisa(on	of	dense	output	

for	field	propaga(on		

by	Dmitry	Sorokin		(MIPT,	Moscow	Russia)	

Mentored	by:	John	Apostolakis		
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GSoC	2016	Project	Outline	

•  Goals	
•  The	Bulirsch-Stoer	method	

•  Alterna(ve	integra(on	strategy	for	dense	
output	methods	

•  Verifica(on	
–  Propaga(on	in	uniform	magne(c	field	

– NTST	test	
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Project	goals	

•  Implement	the	Bulisrch-Stoer	method		
•  Extrapola)on	methods	are	more	efficient	than	the	Runge-Ku2a	methods	

for	smooth	func6ons	and	large	steps	

•  One	of	thea	most	efficient	is	the	Bulirsch-Stoer	method	

•  Use	interpola(on	to	improve	integra(on	&	

volume	intersec(on	
•  Using	dense	output	(interpola6on)	the	solu6on	can	be	evaluated	for	any	

point	within	the	integra6on	interval.		

•  For	a	fixed	number	of	extra	field/func6on	evalua)ons	and	provides	an	
es6mate	of	the	‘solu6on’	for	any	number	of	intermediate	points	

•  versus	a	new	set	of	‘N’	evalua6ons	for	each	intermediate	point	–	the	

exis6ng	alterna6ve	(e.g.	N=4	for	classical	RK4,	N=6	for)	
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The	Bulirsh-Stoer	method	

Idea:		
•  Use	midpoint	method	to	

es(mate	integral	

•  Vary	number	of	intermediate	
points	

•  Approximate	the	integral	using	
ra(onal	func(ons	

•  Extrapolate	to	n	=	∞	

Advantages:	
•  Step	size	and	order	control		
•  Very	good	for	smooth	problems	

and	large	steps	

•  Can	provide	interpola(on	/	
dense	output	
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n	=	2i+2,	for	i	=	0,1,2….		

n	=	4i+2,	for	i	=	0,1,2….		



Alterna(ve	integra(on	strategy	for	

methods	with	dense	output	

Old	strategy		
•  Make	series	of	steps	without	error	

control	to	predict	the	step	size	

(sa(sfying	d	<	δchord)	

•  Make	a	step	with	error	control	to	

improve	the	accuracy		

	(Δ	Endpoint	<	δOneStep)	

•  If	the	chord	intersects:		

make	a	series	of	substeps	with	

error	control	to	locate	the	

intersec(on	point	

New	strategy	
• 	Make	one	step	with	error	control	

• 	Use	dense	output	to	divide	the	step	to	
substeps	(sa(sfying	d	<	deltaChord)		

• 	For	each	substep:	
if	the	chord	intersects:	

Use	dense	output	to	locate	the	

intersec(on	point	

	

Pros:	A	lot	fewer	field	evalua(ons	

required	for	large	steps	

Cons:	Dense	output	is	less	accurate	

than	the	solu(on	
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Propaga(on	in	uniform	magne(c	field	
1	MeV	proton	in	the	uniform	1	tesla	magne(c	field.		Radius	of	the	circle	in	xz	plane	is	102.20	mm		

Momentum	is	43.33		MeV/c.		deltaOneStep	=	1e-4	mm,	deltaIntersec(on	=	1e-5	mm		
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Propaga(on	in	uniform	magne(c	field	
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NTST	test	

File	 range	
cut	

looper	
cut	

min	
Ecat	

run2a.
mac	

1	mm		 200	
MeV	

1	MeV	

run2b.
mac	

1	mm		 Not	
applied	

1	MeV	

run2c.
mac	

1	mm		 Not	
applied	

Not	
applied	

Geant4	benchmark	test.	
Simulates	the	BaBar	silicon	
vertex	tracker	and	40-layer	
driy	chamber.		
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Thank	you	
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TEXT

FROM ‘RANDOM’ NEXT POINT TO INTERSECTION

▸ Found endpoint of integration C: xC, pC 

▸ How to find the intersection point E of the 
curve with the next volume boundary? 

▸ Assume we already have or calculate 
intermediate points B3 & B6 also on curve 

▸ First identify an approximate intersection - 
in this case D3  

▸ Then refine it to be ‘close enough’ to curve 
- as close as possible to true intersection E

B1

B2

B3

B4

B5

B6

B8

B7

A

C

D3 E


