Alternative integration methods and utilization of dense output for field propagation Dmitry Sorokin (GSoC 2016), John Apostolakis (CERN) Somnath Banerjee (GSoC 2015) & Jason Suagee (GSoC 2015),

Outline

- Overview of field propagation in Geant4
- New methods in 10.3-beta
 - Integrated several 2015 developments
- New developments
 - The Bulirsch-Stoer method
 - Using interpolation to speed up intersection with volume boundary
 - Verification

Field propagation in Geant4

- Uses Runge-Kutta integration with adaptive step size control
 - 1. d < deltaChord
 - 2. $\Delta B < deltaOneStep$
- Locates boundary intersection using iterative intersections of chords

Until |F – E| < deltaIntersection

Integrating efficiently

- Given a detector's field B(x,y,z) [or B+E] we need to integrate the trajectory of each track, taking care
 - to stay within a relative accuracy ε
 - to be fast using as few calls as possible to the field method
- Typically choose Runge-Kutta methods
 - No history. Ability to adjust step size

TEXT

Geant4 steppers

- 'Classical RK4' = original 4th order method, 4 stages
 - Error estimate from breaking step in two => 11 eval.
- Embedded methods provides built-in error estimate
 - Cash-Karp (1990) uses difference of 5th & 4th order method, six stages
 = 6 evaluations of derivative
- AtlasRK4/NystromRK4: 3 field evaluations + evaluation of error using numerical estimate of 4th derivative - restricted to B-fields
- Helix for constant field
- Lower order RK methods for short steps, and/or lower accuracy

SELECTED NEW METHODS

Name / Authors	Order	Stages	Error	#Evaluations		FSAL	Interpolation	Extra
			Estim.	Failed	Good		(Order)	evaluations
Classical	4	4	Ν	11	11	No	No	-
CashKarp	5	6	Y	5	5	No	No	
Dormant-Prince 5 "DoPri5"	5	7	Y	6	5	Yes	Yes - 2 ways (4/5)	0/2
Bogacki- Shampine45	5	8	Y	7	6	Yes	Yes	2
Dormand-Prince8	8	13	Y	12	11	No	No	
Verner78 'efficent'	8	13	Y	12	12	No	Yes - 2 (7 / 8)	4/8

-log(epsilon) - Accuracy

Integration of new steppers

- Now integrated in Geant4 10.3 beta:
 - BogackiShampine 2/3 and 4/5
 - DormandPrince 4/5 (7 stages = evaluations)
- A few RK tableaus not integrated
 - Expect 'very high' (>6) order Verner methods
- FSAL & Interpolation available but not used
 Full 'move' to using FSAL 'simple' (simpler)
- Issue with interpolation of DormandPrince 4/5
 - Fixed recently

Alternative integration methods and utilisation of dense output for field propagation

by Dmitry Sorokin (MIPT, Moscow Russia) Mentored by: John Apostolakis

GSoC 2016 Project Outline

- Goals
- The Bulirsch-Stoer method
- Alternative integration strategy for dense output methods
- Verification
 - Propagation in uniform magnetic field
 - NTST test

Project goals

- Implement the Bulisrch-Stoer method
- **Extrapolation methods** are more efficient than the Runge-Kutta methods for smooth functions and large steps
- One of thea **most efficient** is the Bulirsch-Stoer method
- Use interpolation to improve integration & volume intersection
- Using **dense output** (interpolation) the solution can be evaluated for any point within the integration interval.
- For **a fixed number** of extra field/function **evaluations** and provides an estimate of the 'solution' for any number of intermediate points
 - versus a new set of 'N' evaluations for each intermediate point the existing alternative (e.g. N=4 for classical RK4, N=6 for)

The Bulirsh-Stoer method

Idea:

- Use midpoint method to estimate integral
- Vary number of intermediate points
- Approximate the integral using rational functions
- Extrapolate to n = ∞

Advantages:

- Step size and order control
- Very good for smooth problems and large steps
- Can provide interpolation / dense output

Alternative integration strategy for methods with dense output

Old strategy

- Make series of steps without error control to predict the step size (satisfying d < δ_{chord})
- Make a step with error control to improve the accuracy (Δ Endpoint < δ_{OneStep})
- If the chord intersects: make a series of substeps with error control to locate the intersection point

New strategy

- Make one step with error control
- Use dense output to divide the step to substeps (satisfying d < deltaChord)
- For each substep: if the chord intersects:
 - Use dense output to locate the intersection point

Pros: A lot fewer field evaluations required for large steps *Cons:* Dense output is less accurate than the solution

Propagation in uniform magnetic field

1 MeV proton in the uniform 1 tesla magnetic field. Radius of the circle in xz plane is 102.20 mm Momentum is 43.33 MeV/c. deltaOneStep = 1e-4 mm, deltaIntersection = 1e-5 mm

16

Propagation in uniform magnetic field

NTST test

Thank you

FROM 'RANDOM' NEXT POINT TO INTERSECTION

- Found endpoint of integration C: \mathbf{x}_{C} , \mathbf{p}_{C}
- How to find the intersection point E of the curve with the next volume boundary?
- Assume we already have or calculate intermediate points B₃ & B₆ also on curve
- First identify an approximate intersection in this case D₃
- Then refine it to be 'close enough' to curve
 as close as possible to true intersection E

