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Outline

* Overview of field propagation in Geant4

* New methods in 10.3-beta
— Integrated several 2015 developments

* New developments
— The Bulirsch-Stoer method

— Using interpolation to speed up intersection with
volume boundary

— Verification



Field propagation in Geant4

* Uses Runge-Kutta
integration with adaptive
step size control

1. d < deltaChord

2. AB < deltaOneStep

* Locates boundary @B =
intersection using A<~ — I~
iterative intersections of E B

chords Until |F — E| < deltalntersection
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Integrating
efficiently

s (curve length
Given a detector’ s field B(x,y,z) [or B+E ] we
need to integrate the trajectory of each track,
taking care

to stay within a relative accuracy ¢ |Ax| <& s
|Ap| <€ p

to be fast - using as few calls as possible to the field Alp| ~0

method

Typically choose Runge-Kutta methods Estimate xs Cy0mMate x:

No history. Ability to adjust step size

Estimate p4

Estimate ps




Embedded Runge- o
Kutta methods "™ e

“Integrate” dy/dx = F(x, y) from Xo to xo+h
Uses evaluations of F(, y):

fi = F( , Yo+ h 2j<i bj fj)

Yestim(Xo+ h) = Zi i fi VRes3=2f1/9 + f2/3 + 4f3/9
Each method has its ‘tableau’ of a;, bjj, ¢;

Key Parameters of an RK method:

o

f()
‘Order’ = the expected scaling of the error ~ hN/ ’
v (xo+h)=2Zic if

Embedded method = 2nd ‘line’ to estimate-
=lrirelr Ay = Zi (ci-ci) fi

Number of ‘stages’ = number of evaluations of




Geant4 steppers

“Classical RK4’ = original 4th order method, 4 stages
Error estimate from breaking step in two => 11 eval.

Embedded methods provides built-in error estimate

Cash-Karp (1990) - uses difference of 5th & 4th order method, six stages
= 6 evaluations of derivative

AtlasRK4/NystromRK4: 3 field evaluations + evaluation of error using
numerical estimate of 4th derivative - restricted to B-fields

Helix - for constant field

Lower order RK methods for short steps, and/or lower accuracy




Name / Authors | Order | Stages | Error

Estim.

Classical

CashKarp

Dormant-Prince 5
"DoPri5”

Bogacki-
Shampine45

Dormand-Prince8

Verner78 ‘efficent’

#Evaluations

Failed

Good

FSAL

Interpolation

(Order)

Extra

evaluations
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Integration of new steppers

Now integrated in Geant4 10.3 beta:
— BogackiShampine 2/3 and 4/5
— DormandPrince 4/5 (7 stages = evaluations)

A few RK tableaus not integrated

— Expect ‘very high’ (>6) order Verner methods
FSAL & Interpolation available — but not used
— Full ‘move’ to using FSAL ‘simple’ (simpler)

Issue with interpolation of DormandPrince 4/5
— Fixed recently



Somanth Banerjee (GSoC 2015)

Plot at UFM z:1000 Gauss theta step = pi/3
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GSoC 2016 Project Outline

Goals
The Bulirsch-Stoer method

Alternative integration strategy for dense
output methods

Verification
— Propagation in uniform magnetic field
— NTST test
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Project goals

* Implement the Bulisrch-Stoer method

* Extrapolation methods are more efficient than the Runge-Kutta methods
for smooth functions and large steps

* One of thea most efficient is the Bulirsch-Stoer method

* Use interpolation to improve integration &
volume intersection

* Using dense output (interpolation) the solution can be evaluated for any
point within the integration interval.

* For a fixed number of extra field/function evaluations and provides an
estimate of the ‘solution’ for any number of intermediate points

» versus a new set of ‘N’ evaluations for each intermediate point — the
existing alternative (e.q. N=4 for classical RK4, N=6 for)
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The Bulirsh-Stoer method

Idea:

Use midpoint method to
estimate integral

Vary number of intermediate
points

Approximate the integral using
rational functions

Extrapolate ton = oo

Advantages:

Step size and order control

Very good for smooth problems
and large steps

Can provide interpolation /
dense output

H/4 H/2 3H/4

-+

n=2j+2, fori=0,1,2...

dense out

® Extrapolation
to oo substeps

H/4 H/2 3H/4
| | |

-

n=4j+2, fori=0,1,2....
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Alternative integration strategy for
methods with dense output

Old strategy

Make series of steps without error
control to predict the step size
(satisfying d < 6,,,,4)

Make a step with error control to
improve the accuracy

(A Endpoint < 8¢ estep)
If the chord intersects:

make a series of substeps with
error control to locate the
intersection point

New strategy

* Make one step with error control
* Use dense output to divide the step to
substeps (satisfying d < deltaChord)
* For each substep:
if the chord intersects:
Use dense output to locate the
intersection point

Pros: A lot fewer field evaluations
required for large steps

Cons: Dense output is less accurate
than the solution
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position error, mm

position error, mm

Propagation in uniform magnetic field

1 MeV proton in the uniform 1 tesla magnetic field. Radius of the circle in xz plane is 102.20 mm
Momentum is 43.33 MeV/c. deltaOneStep = 1e-4 mm, deltalntersection = 1e-5 mm
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field calls per step

Propagation in uniform magnetic field
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Number of field calls

Event time, s
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NTST test
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Geant4 benchmark test.

Simulates the BaBar silicon
vertex tracker and 40-layer
drift chamber.
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run2a.
mac

run2b.

mac

run2c.

mac

1mm

1 mm

18

200
MeV

Not
applied

Not
applied

1 MeV

1 MeV

Not
applied



Thank you






