Quick Status of Generic Biasing

Marc Verderi LLR/Ecole polytechnique Ferrara G4 Collaboration Meeting September 2016

Reminder About Existing Functionalities

> Design of generic biasing relies on:

- two main abstract classes:
 - > G4VBiasingOperation:
 - Biasing of physics processes
 - > Change of process interaction law
 - > Change of final state generation
 - Splitting/killing
 - > G4VBiasingOperator:
 - Which takes decisions on what biasing operation to apply
 - At the beginning of the step, and at the post step
- One concrete class : G4BiasingProcessInterface
 - Makes the connection between the biasing and the tracking
 - > Gets instructions from the biasing operator about operations to apply
- > Concrete implementations:
 - Biasing operation to change a process cross-section
 - Forced collision scheme à la MCNP
 - Both functionalities validated with neutral particles

> Set of examples example/extended/biasing/GBXX

- GB01 : change of XS
- GB02 : force collision
- GB03 : geom. importance based biasing
- GB04 : bremsstralhung splitting

First released in 10.0 then consolidation in 10.1 and 10.2. In particular in 10.2 : use of track auxiliary information (forced collision scheme) & easy access to phys. process XS to operator.

Status as of Today

- > Not much happened this year
- > Several items are planned
 - Not all will be delivered this year
 - ⇒Take opportunity to discuss needs/priorities
- > Prioritized list for now (not all for this year !):
 - Statistical tests / statistical test suite
 - Refactor existing generic biasing bremsstrahlung splitting example to source
 - Implicit capture
 - Biasing of charged particles
 - Allow use of parallel worlds
 - Use of occurrence biasing to allow continuous density change inside a same volume
 - DXTRAN-like biasing
 - Material/isotope biasing
 - Woodcock tracking

Status as of Today

- > Not much happened this year
- > Several items are planned
 - Not all will be delivered this year
 - ⇒Take opportunity to discuss needs/priorities
- > Prioritized list for now (not all for this year !):
 - Statistical tests / statistical test suite
 - Refactor existing generic biasing bremsstrahlung splitting example to source
 - Implicit capture
 - Biasing of charged particles
 - Allow use of parallel worlds
 - Use of occurrence biasing to allow continuous density change inside a same volume
 - DXTRAN-like biasing
 - Material/isotope biasing
 - Woodcock tracking

Statistical Test Suite

- > This is the priority
 - as needed to validate any biasing developments
- Goal : perform a statistical validation of the biased simulation against the analog one
 - Hence, need to run heavy analog statistics
 - > Clusters ? Grid ?
- > Simple in principle:
 - Record "same" histograms and some observables
 - With quantities entered with proper weights
 - And make statistical tests
- > In practice:
 - Might be a same test that is run with:
 - > A light statistics mode, for testing purposes
 - > A heavy statistics mode, for statistical validation
 - and a script/macro to perform the comparisons
 - Can/must be done with already existing options

Implicit Capture

- MCNP option in neutron transport
 - "Implicit capture," "survival biasing," and "absorption by weight reduction" stand for the same technique

Keep neutrons alive wrt absorption process(es)

- Makes a same neutron "exploring" more phase space

> From MCNP manual:

- variance reduction technique applied <u>after</u> the collision nuclide has been selected. Let:
 - > σ_{ti} = **total** microscopic cross section for nuclide i and
 - > σ_{ai} = microscopic **absorption** cross section for nuclide I
- particle weight changed as $W \rightarrow W * (1 \sigma_{ai} / \sigma_{ti})$

> Technically, need to get the nuclide selected

- Might not be straightforward

> MCNP also advertises "Implicit Absorption Along a Flight Path"

- Variant of option, where absorption processes are suppressed.
 - > This is simply equivalent to put to zero absorption cross-sections
 - > We call "force free flight" : used today (in force collision scheme)
- This second scheme should be possible today

Interaction Law Biasing for Charged Particles

- > Change of interaction law by:
 - cross-section change
 - Force collision
 - Force non-collision (force free flight)
 - .
- > Options that already exist for neutral particles
- > Difficulty:
 - Weight calculation involves integral of XS over the step...
 - ... and cross-section value changes over the step
 - > Because of energy loss

> Laurent Desorgher developed a method to compute the weight by MC

- Validated on toy MC
- Need to implement in G4

> Note:

- XS variation over a step is taken into account by the "integral approach"
- EM uses "integral approach" for processes
 - > to take into account XS change for many years
- Hadronics just starts to use this
- \Rightarrow Taking into account XS variation becomes hence a mandatory feature

GEANT4 CM, FERRARA, SEPTEMBER 2016

Use of Occurrence Biasing to Allow Continuous Density Change Inside a Same Volume

> Volumes hold a constant density material

 But occurrence biasing may be used to mimic a continuously varying density.

- > Idea:
 - Sample:

 $p(l) = \sigma(l) \cdot \int_0^l \exp(-\sigma(s)) \, ds$

Instead of:

- $p(l) = \sigma \cdot \exp(-\sigma \cdot l)$
- $\overline{-}$ Using $\sigma(l) \propto \text{density}(l)$

In this problem, all particles keep : weight = 1

DXTRAN-like Biasing

 Option in MCNP to scatter particles toward a preferred solid angle

One copy representing the "unforced" part of the flux

One copy being forced to freely fly toward ROI \Rightarrow Final state biasing + free flight

⇒ Might involve explicit dependence on physics packages to get the scattering law

Incoming particle

Dependencies on Other Physics Packages

- Dependencies between biasing and other physics packages must be introduced
 - Because of absence of generic interfaces for XS and differential XS
 - XS : interaction law biasing
 - > G4VProcess provides the interaction length in a generic way
 - But getting the cross-section at the end of the step to apply the "integral approach" will likely involve explicit dependencies on physics packages
 - Differential XS : final state biasing:
 - Splitting/killing of primary/secondaries could be made using G4VProcess interface only
 - But any change of final state distribution will likely require dependencics on physics packages to access related laws

> Could consider:

- Biasing depending on other physics packages
 - > And all concrete biasing classes reside under biasing

** Or (exclusive) **

- Physics packages depend on biasing
 - > To access the biasing interfaces
 - > Having the concrete biasing classes residing in physics packages
- > Must be discussed.