
Parallelization 
improvements

Andrea Dotti (adotti@slac.stanford.edu) ; SLAC/SD/EPP/Computing
Geant4 21st Collaboration Meeting – Ferrara, 12-16 September 2016

MT and MPI

mailto:adotti@slac.stanford.edu


2

Parallelization options in G4

Multi-threading (shared memory model) and MPI (distributed 
memory model) are both mature and feature complete

MPI extension, depending on external library, is not part of the 
kernel, but is provided in the example category

– A library libG4mpi.so is created together with examples
– We could move it to the kernel (intercoms category) as an optional 

component (like GDML support for example), but it is not critical



3

MT Memory

Memory well under 
control and better than 

our goal since 1.2



4

MT Scaling

We measure scaling in two ways: strong and weak
– Strong scaling: keep constant the total number of 

events measure the time between first and last event: 
– Weak scaling: keep constant the number of events per 

thread, measure time for each event and: 
It is possible that in weak scaling we get >1 slope

Strong Weak



5

Explanation
Sequential

MT

MT collaborative
building data 
structures



Geant4 applications from MPI point of view

G4Application
Rank #

G4Application
Rank #

UI Commands / macro file

RNG Seed

Data Base files

g4analsyis 
histos

g4analysis
ntuple files

user-defined 
G4Run

Visualization

command
line scorers



Geant4 applications from MPI point of view

G4Application
Rank #

G4Application
Rank #

UI Commands / macro file

RNG Seed

Data Base files

g4analsyis 
histos

g4analysis
ntuple files

user-defined 
G4Run

At this meeting we will discuss ntuple output and start discussion about DB

Visualization

command
line scorers



Demonstrate speed-up w/ multi-threading and MPI

Performances measured with “Bertini cascade validation” application

Linearity of speedup well demonstrated up to large number of 
total workers
Measured on Tachyon 2 supercomputer at KISTI (South Korea)

• degradation of linearity for Nthreads>2000 is partially due to sub-
optimal merging of histogram files via mpi (to be improved in 2016) and 
physical I/O

Need to improve strategy for 
merging of results
Need to improve strategy for 
merging of results



Demonstrate speed-up w/ multi-threading and MPI

Performances measured with “Bertini cascade validation” application

Linearity of speedup well demonstrated up to large number of 
total workers
Measured on Tachyon 2 supercomputer at KISTI (South Korea)

• degradation of linearity for Nthreads>2000 is partially due to sub-
optimal merging of histogram files via mpi (to be improved in 2016) and 
physical I/O

Need to improve strategy for 
merging of results
Need to improve strategy for 
merging of results

See discussion later on 
“G4 at extreme scales” for 
further notes on scalability



10

Merging of results in MT/MPI

Results are merged into master thread in a MT application

If MPI is enabled master sends merged results to rank #0 for further 
reduction

– MPI ranks tend to finish ~ at the same time: bottleneck appears since ranks are 
serialized in communication with rank #0

New: binary tree merging of results to use in parallel network
– Not done yet for histogram merging 



11

Binary Tree Mering

Iteration 1

Iteration 2

Iteration 3

Final Iteration

To disk



12

Binary Tree Mering

Iteration 1

Iteration 2

To disk

Final Iteration



13

HepExpMT

An improved version of ParFullCMS has been created and made publicly available:
– Interest from users and even some companies
– To be used as a “public candle” for Geant4 performance measurement
– Some optional features (e.g. MPI) and I/O testing

To simplify application compilation a script is provided that:
1) Downloads G4
2) Configure G4 and Application
3) Compiles G4 and Application in a coherent environment

Check it out at: https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4HepExpMTBenchmark



HepExpMT brought to you by:



15

Workspace re-use and c++11 migration

Thread private code is now owned/managed by “workspaces” (one per relevant category)
– Possibility of re-using workspaces (if streams < #threads) is coded, but neither tested or debugged: is 

this still requested? Move to next year?

Thread starting and initialization has been further reviewed: more granular methods to 
ease integration in experimental frameworks

Migration from pthreads to c++11: missing manpower for 10.3
– Main use-case is support for Windows
– We have “volunteers” assigned to that, but we are very late!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Geant4 applications from MPI point of view
	Slide 7
	Step 3: demonstrate speed-up w/ multi-threading and MPI
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

