Geant4 (Make Updates

Ben Morgan

THE UNIVERSITY OF

WARWICK

Prototype Code on CERN Gitlab

$ git clone https://qitlab.cern.ch/bmorgan/geant4

$ cd geant4
$ git checkout -t origin/feature/modular-cmake

$ git diff --name-only master

 Branched from 10.3-beta

- Most changes in cmake category, aim is for backward
compatibility as far as possible so no changes to
category/module buildscripts needed.

https://gitlab.cern.ch/bmorgan/geant4

Optimising Geant4 Library Structure:
(Make Functionality and Migration

Module “A”
sources.cmake

1nclude/

G4AModule.hh ..
src/
G4AModule.cc ..

. libFirst.{so,...}

@)
Module D
Module E

libSecond.{so,...},

-~

~
Module F

Module B
Module G

Module C

S

Modules To Libraries in Geant4

_ libThird.{so,...}

14 I 14 —— “uses!!
l.e #include headers

Library Structures in Geant4

» “Granular” structure == 1 module -> 1 library
» ~144 libraries: Lack of coherence, complex deps
» “Global” structure == N modules -> 1 library
- ~30 libraries: Large variance in size, lack of modularity

- Solution: Move to single structure optimised for
coherence, modularity, performance.

« Current CMake usage hard codes Global/Granular...

Involved (Make Scripts

Adds categories

+- geant4 | |
L ik Builds/Resolves .so/links
+- source/

+- (CMakelL1ists.txt

+- first_category Adds Modules
_ R / |
+- (Makel1sts.txt Declares Global Library

+- A_module

+- sources.cmake~¢\\\\\\\\
+_

+- include/ Declares Module

+- src/
+- B_module/
+- second_category/

New CMake System: Back Compatibility

* New option GEANT4_USE_NEW_CMAKE: when set, use
new implementation, otherwise existing system.

* Both systems provide same CMake function interfaces
for module and library declaration:

® geant4_define_module (use 1n sources.cmake)

® geant4_global_library_target (category (MakelLists)

* New system just a different implementation, so
category/module scripts do not have to change and
get current Global Structure as starting point

$ git diff --name-only master

(MakelL1ists.txt

cmake/Modules/G4CMakeMain. cmake
cmake/Modules/G4DeveloperAPI . cmake
cmake/Modules/Geant4BuildProjectConfig. cmake
cmake/Modules/Geant4MacroDefineModule.cmake
cmake/Modules/Geant4MacrolLibraryTargets. cmake
cmake/Modules/Geant40ptional Components . cmake
cmake/Modules/documentation/CMakelLists. txt
cmake/Modules/documentation/G4CMakeDocumentation. cmake
cmake/Modules/documentation/Modules/G4DeveloperAPI.rst
cmake/Modules/documentation/cmake.py
cmake/Modules/documentation/conf.py.1in
cmake/Modules/documentation/index. rst
cmake/Modules/documentation/inventory.py
cmake/Templates/Geant4Config.cmake.1n
source/(MakelL1ists.txt
source/analysis/parameters/sources.cmake
source/externals/zlib/sources.cmake
source/global/management/include/G4GlobalConfig.hh.1n
source/global/management/sources.cmake

Yes, changes really are minimal!

geant4_define_module

source/first_category/A_module/sources.cmake
No longer use hts information but can be left

- a a

geant4_define_module(NAME A
HEADERS G4AModule.hh ..
SOURCES G4AModule.cc ..
LINK_LIBRARIES ${ZLIB_LIBRARIES}
GRANULAR_DEPENDENCIES E

#——MNeed—to—knew—l1brary structurelsy—
—CHOBALBEPENBENCTIESSecand

) =

Under the Hood...

source/first_category/A/sources.cmake
geant4_define_module(..)
Implement “Module” like CMake Targets:
Build a module composed from these headers/sources..
geant4_add_module(CA PUBLIC_HEADERS .. SOURCES ..)

When building OR USING this target, add these as -1
NB: this 1s called inside geant4_add_module
geant4_module_include_directories(A

PUBLIC ${CMAKE_CURRENT_LIST_DIR}/include
)

When building OR USING this target, link these l1ibs
geant4_module_link_libraries(A
PUBLIC E ${ZLIB_LIBRARIES}

)

geant4_global_library_target

source/first_category/CMakelLists.txt
No longer use #hts information but can be left

add—subdirectory(A)
add—subdirectory(B)
agdd—subdirectory(C)

FRONOT—GEANTARBUT LD GRANILARLTRESS
geant4_global_library_target(NAME First
COMPONENTS
A/sources.cmake
B/sources.cmake
C/sources.cmake

)
epndi &

Under the Hood...

source/first_category/CMakelLists.txt
geant4_global_library_target(..)
Load the module declarations
1nclude(A/sources.cmake)
1nclude(B/sources.cmake)
1nclude(C/sources.cmake)
Implement “Library” like (CMake Targets
Declare a library to be composed from these modules
It’s this function that forms the Library Structure
geant4_add_library(First MODULES A B O)
1: Modules must exist and not be used elsewhere
2: Marks “parent library” of A, B, C as “First”
NB: No actual (Make target created here..

Library Structure Hard Coding: Granular

“Granular” library interfaces no
longer exists directly

geant4_compose_targets

source/(MakelLists.txt

Add each category, declares modules, “libraries”
Identical to what we do now
add_subdirectory(First)

add_subdirectory(Second)

add_subdirectory(Third)

C
C

Now have a new element..
1T (GEANT4_USE_NEW_CMAKE)

geant4_compose_targets()
endif()

Under the Hood...

source/(Makelists.txt Stock CMake
geant4_compose_targets()
foreach(library L declared)
add_library(L “”)
foreach(module M 1n L)
target_sources(L sources of M)
target_include_directories(L inc dirs of M)
Simplified - argument list arrived at 1in
several steps!
target_link_libraries(L
<<Resolve Module links back to Parent Library>>
<<Direct 1ink anything that’s not a Module>>
<<Remove Duplicates>>
)
endforeach()
endforeach()

Library Commands

Changing The Library Structure

- Still have Global Structure hard-coded via category level
calls to geant4_add_library

* In progress: Override by supplying a “structure file”:

- Simply contains a list of geant4_add_library commands

Structurel.cmake
geant4_add_library(First MODULES A B O)

Structurel.cmake
geant4_add_library(First MODULES A B)
geant4_add_library(First_C MODULES O

Remaining Tasks

» Optional modules/libraries (GDML is canonical case)

* Suggest that only libraries be optional, as then
existence of library is guarantee of functionality

» Suggest that optional libraries not be depended on by
anything in the toolkit, otherwise need additional
dependency resolution step(s).

» Full export of targets etc to Geant4Config.cmake and
geant4-config, validate that tests and examples build!

New C(Make Implementation Rollout Proposal

- Review and finalise CMake functionality (now).

* Import new CMake functionality into source tree (Jan
20177?).

* Fix any issues like old/missing granular dependencies

 Provide single testing platform/instance that builds/tests
with GEANT4_USE_NEW_CMAKE to ON

« Ensure tests pass, libraries and performance are
identical!

Library Restructure Tasks

- Only after reproduction of identical Global libraries!

* Initial work will be to optimise grouping of current
modules into libraries inside categories, but we should
think about restructuring beyond this

- Merge some Categories into same library?
- Move some Modules into a different Category?

- Move some Module code to other Modules (e.g. base
VS concrete classes)?

Documentation of Geant4 CMake Options,
Functions and Usage

Why Document Geant4's C(Make System?

- Developers need to have a working knowledge of the system to add
new code, define dependencies on other parts of Geant4, and integrate
tests.

- Developers/Users need to know about the various options available to
configure Geant4 (optimization level, MT, optional components)

- |In Installation Guide, but options often added during development

« Developers/Users need to know how to locate and use a build/install of
Geant4 using CMake or other buildtool

- Not CMake specific, but tools/support scripts are generated by it, so
responsibility to document falls on CMake category...

Documenting the C(Make Modules/Functions

- CMake itself is documented using reStructuredText to markup cmake
script (ala Doxygen for C++) and Sphinx to generate HTML/PDF/etc

» Copy CMake’s cmake . py Sphinx parser across, markup Geant4 CMake
modules and build documentation pages for them (“make doc”)

- Discussed in Parallel 2, further Thoughts/Comments/Suggestions?

- Advantage: everything in one place, always up to date, can cross-ref
CMake’s documentation

- Disadvantage: Have some duplication between Install and
Application Guides (but *could* cross-ref)

4DeveloperAPI.cmake[cmake 94/792]1[1

Example CMake Script with reStructuredText Markup

G4DeveloperAP] — Geant4 10.3.0 documentation

Docs » G4DeveloperAPI View page source

G4DeveloperAPI

= G4DeveloperAPI
Module Command: CMake functions and macros for declaring and working with build products of Geant4.
Module Commands

Library Commands

Module Commands <

Backward Compatibility Commands

Internal Helper Commands

geant4 _add_module

geantd add module(<name>
PUBLIC HEADERS headerl [header2 ...])
[SOURCES sourcel [source2 ...]1))

Add a Geant4 module called <name> to the project, composed of the source files listed in the
PUBLIC_HEADERS and SOURCES arguments.The <mame> must be unique within the project.
The directory in which the module is added (i.e. cnAke_currenT_L1sT_bIR for the CMake script

inwhich geant4_add_module iscalled) must contain:

e An include subdirectory for the public headers

e A src subdirectory for source files if the module provides these

The puBLIC_HEADERS argument must list the headers comprising the public interface of the

module. If a header is supplied as a relative path, this is interpreted as being relative to the
include subdirectory of the module. Absolute paths may also be supplied, e.g. if headers are

generated by the project.

The sources argument should list any source files for the module. If a source is is supplied as a
relative path, this is interpreted as being relative to the src¢ subdirectory of the module.

Absolute paths may also be supplied, e.g. if sources are generated by the project.

Example HTML Page as Generated by Sphinx using ReadTheDocs style
(for separate but more complete example, see http://drbenmorgan.github.io/cetbuildtools2

http://drbenmorgan.github.io/cetbuildtools2

Usage of Preprocessor Directives/Flags in
Geant4 and Consistent Builds

Simplifying Usage of -D/Preprocessor Flags

« Many places in Geant4 use preprocessor directives to control functionality,
with compiler flags used to activate via definitions

- Standard practice, but have several cases where these -D flags must be
consistently applied to both build of Geant4 and client code:

$ c++ -DGAMULTITHREADED .. G4Source.cc

$ c++ -DGAMULTITHREADED .. UserApplication.cc

 This has the potential for confusion and/or inconsistent builds

- CMake/GMake/geant4-config can transmit flags, but an easier and more
robust solution without these tools or user knowledge is possible

Replace -D flags by #define Directives

- Essentially a hard-coding problem: Macros appear in public headers and
source files of Geant4.

- But “hard coding” is really requirement to use a -D flag to define the macro

$ c++ -DGAMULTITHREADED .. UserApplication.cc

- Solution: make hard-coding explicit by replacing definition via compiler
flags with C++ header(s) containing #define directives.

* In Geant4 code, simply #1nclude this header where required

e In Client Code, simply #1nclude this header where required (or not if the
code doesn’t directly use the macro).

(reating “G4GlobalConfig.hh”

- Use CMake’s configure_f1ile and #cmakedefine functionality (or
sed/awk in GMake)

/// “G4GlobalConfig.hh.1n”

#1fndef G4GLOBALCONFIG_HH_HH
#define G4GLOBALCONFIG_HH_HH

/// Defined 1f Geant4 built 1n MT mode
#cmakedefine GAMULTITHREADED

/// Numeric version of C++ Standard compiled against
#cmakedefine GEANT4_BUILD_CXXSTD "@GEANT4_BUILD_CXXSTD@"

/// Here's something that isn't defined
#cmakedefine GEANT4_DEMO_UNDEF

#endif // GAGLOBALCONFIG_HH_HH

Creating “G4GlobalConfig.hh"

- Depending on the settings chosen, the #def1ne directives are set
accordingly in the generated header:

/// “G4GlobalConfig.hh”

#1fndef GAGLOBALCONFIG_HH_HH
#define G4GLOBALCONFIG_HH_HH

/// Defined 1f Geant4 built in MT mode
#define GAMULTITHREADED

/// Numeric version of C++ Standard compiled against
#define GEANT4_BUILD_CXXSTD "11"

/// Here's something that i1sn't defined
/* #undef GEANT4_DEMO_UNDEF */

#endif // GAGLOBALCONFIG_HH_HH

Using “G4GlobalConfig.hh”

- Geant4 and client code simplify #1.nclude the header, and the macro
definitions are available and consistent without requiring a compiler flag.

/// “G4Code.hh/cc” or “UserCode.hh/cc”

#1nclude “G4GlobalConfig.hh”

#1f defined(GAMULTITHREADED)
#else

#endif

Implement After 10.3?

* Need to identify all macros, where they are used, and
their build/use time requirements.

* Implementation of config headers in CMake build is easy,
need to review for GMake.

 Review whether to explicitly #undef macros before
#cmakedefine to guarantee that -D flags cannot
override.

» Gradual rollout through code based on review - testing
should pick up issues via compile or link time errors.

Discussion

