
Geant4 CMake Updates

Ben Morgan

Prototype Code on CERN Gitlab

• Branched from 10.3-beta

• Most changes in cmake category, aim is for backward
compatibility as far as possible so no changes to
category/module buildscripts needed.

$ git clone https://gitlab.cern.ch/bmorgan/geant4
$ cd geant4
$ git checkout -t origin/feature/modular-cmake
$ git diff --name-only master

https://gitlab.cern.ch/bmorgan/geant4

Optimising Geant4 Library Structure:
CMake Functionality and Migration

libSecond.{so,…}

Modules To Libraries in Geant4

Module “A”
sources.cmake
include/
 G4AModule.hh …
src/
 G4AModule.cc …

Module B

Module C

libFirst.{so,…}

Module D

Module E

libThird.{so,…}

Module F

Module G

“ “ == “uses”
i.e #include headers

Library Structures in Geant4

• “Granular” structure == 1 module -> 1 library

• ~144 libraries: Lack of coherence, complex deps

• “Global” structure == N modules -> 1 library

• ~30 libraries: Large variance in size, lack of modularity

• Solution: Move to single structure optimised for
coherence, modularity, performance.

• Current CMake usage hard codes Global/Granular…

Involved CMake Scripts

+- geant4
 +- cmake/
 +- source/
 +- CMakeLists.txt
 +- first_category
 | +- CMakeLists.txt
 | +- A_module
 | | +- sources.cmake
 | | +- CMakeLists.txt
 | | +- include/
 | | +- src/
 | +- B_module/
 +- second_category/

Adds categories
Builds/Resolves .so/links

Adds Modules
Declares Global Library

Declares Module

Granular Library

New CMake System: Back Compatibility
• New option GEANT4_USE_NEW_CMAKE: when set, use

new implementation, otherwise existing system.

• Both systems provide same CMake function interfaces
for module and library declaration:

•geant4_define_module (use in sources.cmake)

•geant4_global_library_target (category CMakeLists)

• New system just a different implementation, so
category/module scripts do not have to change and
get current Global Structure as starting point

Yes, changes really are minimal!

$ git diff --name-only master
CMakeLists.txt
cmake/Modules/G4CMakeMain.cmake
cmake/Modules/G4DeveloperAPI.cmake
cmake/Modules/Geant4BuildProjectConfig.cmake
cmake/Modules/Geant4MacroDefineModule.cmake
cmake/Modules/Geant4MacroLibraryTargets.cmake
cmake/Modules/Geant4OptionalComponents.cmake
cmake/Modules/documentation/CMakeLists.txt
cmake/Modules/documentation/G4CMakeDocumentation.cmake
cmake/Modules/documentation/Modules/G4DeveloperAPI.rst
cmake/Modules/documentation/cmake.py
cmake/Modules/documentation/conf.py.in
cmake/Modules/documentation/index.rst
cmake/Modules/documentation/inventory.py
cmake/Templates/Geant4Config.cmake.in
source/CMakeLists.txt
source/analysis/parameters/sources.cmake
source/externals/zlib/sources.cmake
source/global/management/include/G4GlobalConfig.hh.in
source/global/management/sources.cmake

geant4_define_module
source/first_category/A_module/sources.cmake
No longer use this information but can be left
include_directories(… path to E module headers …)
… need to know dependencies of dependencies of.. …
include_directories(… path to F module headers …)
…
include_directories(${ZLIB_INCLUDE_DIRS})

geant4_define_module(NAME A
 HEADERS G4AModule.hh …
 SOURCES G4AModule.cc …
 LINK_LIBRARIES ${ZLIB_LIBRARIES}
 GRANULAR_DEPENDENCIES E
… Need to know library structure(s) …
 GLOBAL_DEPENDENCIES Second
)

Under the Hood…
source/first_category/A/sources.cmake
geant4_define_module(…)
 # Implement “Module” like CMake Targets:
 # Build a module composed from these headers/sources…
 geant4_add_module(A PUBLIC_HEADERS … SOURCES …)

 # When building OR USING this target, add these as -I
 # NB: this is called inside geant4_add_module
 geant4_module_include_directories(A
 PUBLIC ${CMAKE_CURRENT_LIST_DIR}/include
)

 # When building OR USING this target, link these libs
 geant4_module_link_libraries(A
 PUBLIC E ${ZLIB_LIBRARIES}
)

source/first_category/CMakeLists.txt
No longer use this information but can be left
add_subdirectory(A)
add_subdirectory(B)
add_subdirectory(C)

if(NOT GEANT4_BUILD_GRANULAR_LIBS)
 geant4_global_library_target(NAME First
 COMPONENTS
 A/sources.cmake
 B/sources.cmake
 C/sources.cmake
)
endif()

geant4_global_library_target

Under the Hood…
source/first_category/CMakeLists.txt
geant4_global_library_target(…)
 # Load the module declarations
 include(A/sources.cmake)
 include(B/sources.cmake)
 include(C/sources.cmake)
 # Implement “Library” like CMake Targets
 # Declare a library to be composed from these modules
 # It’s this function that forms the Library Structure
 geant4_add_library(First MODULES A B C)
 # 1: Modules must exist and not be used elsewhere
 # 2: Marks “parent library” of A, B, C as “First”
 # NB: No actual CMake target created here…

Library Structure Hard Coding: Granular

source/first_category/A/CMakeLists.txt

if(GEANT4_BUILD_GRANULAR_LIBS)
 geant4_granular_library_target(COMPONENT
 sources.cmake
)
endif()

“Granular” library interfaces no
longer exists directly

geant4_compose_targets

source/CMakeLists.txt
Add each category, declares modules, “libraries”
Identical to what we do now
add_subdirectory(First)
add_subdirectory(Second)
add_subdirectory(Third)

Now have a new element…
if(GEANT4_USE_NEW_CMAKE)
 geant4_compose_targets()
endif()

Under the Hood…
source/CMakeLists.txt
geant4_compose_targets()
 foreach(library L declared)
 add_library(L “”)
 foreach(module M in L)
 target_sources(L sources of M)
 target_include_directories(L inc dirs of M)
 # Simplified - argument list arrived at in
 # several steps!
 target_link_libraries(L
 <<Resolve Module links back to Parent Library>>
 <<Direct link anything that’s not a Module>>
 <<Remove Duplicates>>
)
 endforeach()
 endforeach()

Stock CMake
Library Commands

Changing The Library Structure
• Still have Global Structure hard-coded via category level

calls to geant4_add_library

• In progress: Override by supplying a “structure file”:

• Simply contains a list of geant4_add_library commands

Structure1.cmake
geant4_add_library(First MODULES A B C)

Structure2.cmake
geant4_add_library(First MODULES A B)
geant4_add_library(First_C MODULES C)

Remaining Tasks
• Optional modules/libraries (GDML is canonical case)

• Suggest that only libraries be optional, as then
existence of library is guarantee of functionality

• Suggest that optional libraries not be depended on by
anything in the toolkit, otherwise need additional
dependency resolution step(s).

• Full export of targets etc to Geant4Config.cmake and
geant4-config, validate that tests and examples build!

New CMake Implementation Rollout Proposal
• Review and finalise CMake functionality (now).

• Import new CMake functionality into source tree (Jan
2017?).

• Fix any issues like old/missing granular dependencies

• Provide single testing platform/instance that builds/tests
with GEANT4_USE_NEW_CMAKE to ON

• Ensure tests pass, libraries and performance are
identical!

Library Restructure Tasks

• Only after reproduction of identical Global libraries!

• Initial work will be to optimise grouping of current
modules into libraries inside categories, but we should
think about restructuring beyond this

• Merge some Categories into same library?

• Move some Modules into a different Category?

• Move some Module code to other Modules (e.g. base
vs concrete classes)?

Documentation of Geant4 CMake Options,
Functions and Usage

Why Document Geant4’s CMake System?
• Developers need to have a working knowledge of the system to add

new code, define dependencies on other parts of Geant4, and integrate
tests.

• Developers/Users need to know about the various options available to
configure Geant4 (optimization level, MT, optional components)

• In Installation Guide, but options often added during development

• Developers/Users need to know how to locate and use a build/install of
Geant4 using CMake or other buildtool

• Not CMake specific, but tools/support scripts are generated by it, so
responsibility to document falls on CMake category…

Documenting the CMake Modules/Functions
• CMake itself is documented using reStructuredText to markup cmake

script (ala Doxygen for C++) and Sphinx to generate HTML/PDF/etc

• Copy CMake’s cmake.py Sphinx parser across, markup Geant4 CMake
modules and build documentation pages for them (“make doc”)

• Discussed in Parallel 2, further Thoughts/Comments/Suggestions?

• Advantage: everything in one place, always up to date, can cross-ref
CMake’s documentation

• Disadvantage: Have some duplication between Install and
Application Guides (but *could* cross-ref)

Example CMake Script with reStructuredText Markup

Example HTML Page as Generated by Sphinx using ReadTheDocs style

(for separate but more complete example, see http://drbenmorgan.github.io/cetbuildtools2

http://drbenmorgan.github.io/cetbuildtools2

Usage of Preprocessor Directives/Flags in
Geant4 and Consistent Builds

Simplifying Usage of -D/Preprocessor Flags
• Many places in Geant4 use preprocessor directives to control functionality,

with compiler flags used to activate via definitions

• Standard practice, but have several cases where these -D flags must be
consistently applied to both build of Geant4 and client code:

• This has the potential for confusion and/or inconsistent builds

• CMake/GMake/geant4-config can transmit flags, but an easier and more
robust solution without these tools or user knowledge is possible

$ c++ -DG4MULTITHREADED … G4Source.cc

$ c++ -DG4MULTITHREADED … UserApplication.cc

Replace -D flags by #define Directives
• Essentially a hard-coding problem: Macros appear in public headers and

source files of Geant4.

• But “hard coding” is really requirement to use a -D flag to define the macro

• Solution: make hard-coding explicit by replacing definition via compiler
flags with C++ header(s) containing #define directives.

• In Geant4 code, simply #include this header where required

• In Client Code, simply #include this header where required (or not if the
code doesn’t directly use the macro).

$ c++ -DG4MULTITHREADED … UserApplication.cc

Creating “G4GlobalConfig.hh”
• Use CMake’s configure_file and #cmakedefine functionality (or
sed/awk in GMake)

/// “G4GlobalConfig.hh.in”

#ifndef G4GLOBALCONFIG_HH_HH
#define G4GLOBALCONFIG_HH_HH

/// Defined if Geant4 built in MT mode
#cmakedefine G4MULTITHREADED

/// Numeric version of C++ Standard compiled against
#cmakedefine GEANT4_BUILD_CXXSTD "@GEANT4_BUILD_CXXSTD@"

/// Here's something that isn't defined
#cmakedefine GEANT4_DEMO_UNDEF

#endif // G4GLOBALCONFIG_HH_HH

Creating “G4GlobalConfig.hh”
• Depending on the settings chosen, the #define directives are set

accordingly in the generated header:

/// “G4GlobalConfig.hh”

#ifndef G4GLOBALCONFIG_HH_HH
#define G4GLOBALCONFIG_HH_HH

/// Defined if Geant4 built in MT mode
#define G4MULTITHREADED

/// Numeric version of C++ Standard compiled against
#define GEANT4_BUILD_CXXSTD "11"

/// Here's something that isn't defined
/* #undef GEANT4_DEMO_UNDEF */

#endif // G4GLOBALCONFIG_HH_HH

Using “G4GlobalConfig.hh”
• Geant4 and client code simplify #include the header, and the macro

definitions are available and consistent without requiring a compiler flag.

/// “G4Code.hh/cc” or “UserCode.hh/cc”

#include “G4GlobalConfig.hh”

…

#if defined(G4MULTITHREADED)
…
#else
…
#endif

Implement After 10.3?
• Need to identify all macros, where they are used, and

their build/use time requirements.

• Implementation of config headers in CMake build is easy,
need to review for GMake.

• Review whether to explicitly #undef macros before
#cmakedefine to guarantee that -D flags cannot
override.

• Gradual rollout through code based on review - testing
should pick up issues via compile or link time errors.

Discussion

