

Nuclear physics domain

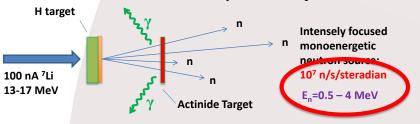
L.G. Sarmiento, Lund University, Sweden

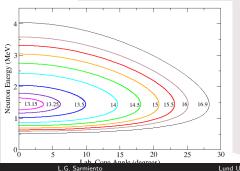
Lund University

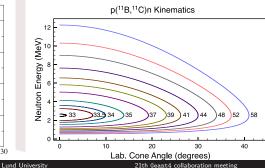
21th Geant4 collaboration meeting September 2016

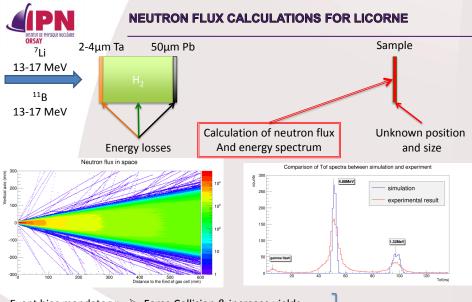
USE OF GEANT4 FOR GAMMA SPECTROSCOPY WITH LICORNE:

RESPONSE FUNCTION CALCULATION AND GEOMETRY STUDIES

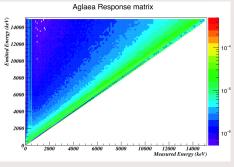



M. Lebois


INSTITUT DE PRIVIDINE MILITÉRISE


NEUTRON FLUX CALCULATIONS FOR LICORNE

Lithium Inverse Cinematiques ORsay Neutron source


Event bias mandatory: > Force Collision & increase yields
> Increase cross section & renormalise

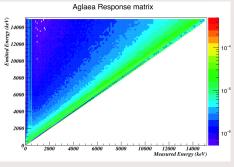
Done "by hand"

RESPONSE FUNCTION CALCULATION

Experimentally Measured Spectrum

Really Emitted Spectrum

GEANT4 Simulation of Gamma Response Matrix in each detector


- ➤ Simple Gamma Tracking in sensitive Detectors
- > Recursive simulation using scripts language
- ➤ Difficulties to validate using standard "Radioactive Decay"

Rebuilt standard gamma source spectra by myself

RESPONSE FUNCTION CALCULATION

Experimentally Measured Spectrum

Really Emitted Spectrum

GEANT4 Simulation of Gamma Response Matrix in each detector

- ➤ Simple Gamma Tracking in sensitive Detectors
- > Recursive simulation using scripts language
- ➤ Difficulties to validate using standard "Radioactive Decay"

Rebuilt standard gamma source spectra by myself

MY "DAILY" USE OF GEANT4: FEEDBACK

- ✓ Versatility: New physics processes, any kind of detectors
- ✓ Exhaustive information in the simulation accessible: detailed tracking

Geometry visualisation: cannot handle to complex solids

- X Growth of the number of files: TrackerSD, TrackerHit, EventAction, RunAction, SteppingAction...
- x Information Access on how to compute a geant4 simulation: difficult for a beginner, not to say impossible without an experienced mentor (M1-M2, PhD Students)

Status and Progress on Requests from the Cosmic and High Intensity Frontiers

Dennis Wright Geant4 Technical Forum 2 October 2015

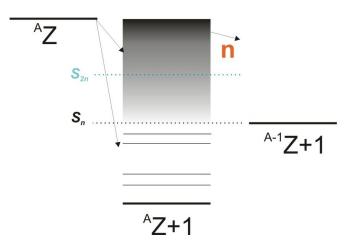
Requested Projects Recently Completed or Under Development

Cosmic Frontier

- Phonon and charge carrier physics
 - phonon and e/h model in Ge at 0 K is well-advanced
 - to be completed early next year
- Improved energy conservation for α and β decay channels
 - done
- Addition of low energy (α, n) reactions
 - done with addition of unified ParticleHP, available in 10.2
- GENIE-Geant4 interface for nuclear final state interactions
 - underway, starting with Bertini cascade interfaced to GENIE
 - ready late this year/early next

Cosmic Frontier

- Provide missing levels and lifetimes in radioactive decay
 - good progress, may be ready for 10.2


Projects Either Just Started or Not Yet Begun

Cosmic Frontier

- General improvement of RDM code including:
 - biasing
 - missing levels (if not done by 10.2)
- Add new RDM channels
 - β-delayed neutron emission
 - · spontaneous fission

β -delayed neutron emission

... from the tracker ...

X

User Requirements / UR-31

The patch on 10.2 should correct.

Treatment of gamma cascades after neutron capture (Gd, Xe)

THANK YOU for your attention