
New Logging Monitoring
Example

Andrea Dotti (adotti@slac.stanford.edu) ; SLAC/SD/EPP/Computing
Geant4 21st Collaboration Meeting – Ferrara, 12-16 September 2016

Performance Made Easy

https://gitlab.cern.ch/adotti/Geant4LoggingMonitoring

mailto:adotti@slac.stanford.edu
https://gitlab.cern.ch/adotti/Geant4LoggingMonitoring

Introduction
● When we see changes in CPU performances the first question we ask ourselves is:

“did the physics change? Do we see less/more tracks/steps?”
– Soon provides answers to these questions via detailed profiling of specific applications

● The same question is also important for physics validation. While a change of
number of tracks does not teach us much per-se is an piece of information

– In this case one needs to manually change the user action code, add counters and print them out

● Starting from 10.3 we will allow multiple user-actions in each job (see kernal updates
talk in plenary 7)

– We can now think to develop some common utilities that can be used to monitor these quantities
in a general case

– We can share this code so anybody can use the same code to monitor applications

3

The LoggingMonitoring Example

A set of “monitors” has been created to allow one or more of:
– Number of steps
– Number of tracks and time needed to complete
– Number of events and time needed to complete simulation
– Number of runs and time needed to complete simulation

Filters can be associated to each “monitor”:
– Filter on particle type
– Filter on energy window
– Filter on geometry volume

Allows for logging to:
– Standard Output
– Histograms (via G4Analysis)
– Ntuples (via G4Analysis)

4

User Interface

Two user interfaces provided:
– UI commands:

1) Instantiate monitor in G4ActionInitialization class (this will
automatically use the new multiple-action functionality)

2) Definition of monitor, filters and loggers is fully UI command based
– Via C++ API for example to create advanced filters

5

G4ActionInitialization::Build()

void MyActionInitialization::Build() const {
 // your user code goes here
 [...]
 // these are the last two lines:
 auto monman = new G4MonitorManager;
 G4AutoDelete::Register(monman);
}

//Same for BuildForMaster

6

UI commands
/run/initialize
Count number of steps of e­
with 10MeV<E<100MeV in volume “Calo”
/monitoring/step/create myMon1
/monitoring/step/addParticleFilter e­ myMon1
/monitoring/step/addEnergyFilter 10 100 myMon1 //in MeV
/monitoring/step/addLogicalVolumeFilter Calo myMon1

Save info in histograms (binning is automatic):
/monitoring/setOutput Histo file.root

/monitoring/initialize
/run/beamOn 100
/monitoring/finalize

7

Example

Proposing a new example in:
– extended/runAndEvent/Monitoring
– Simple geometry (box of material) with trivial user actions

Showing both UI monitoring ad C++ API

8

Status

Code is ready since some time, however we never included in SVN for
two reasons:

– We first needed the possibility to have multiple-user actions
– Run category will depend on G4Analysis (for histograms and ntuples):

discussion please!

Aiming at public release for 10.3
– Proposing to then use this functionality for monitoring int the context of

performance monitoring

Backup

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

