GQLink

An implementation of Quantized State System (QSS) methods in Geant4

Lucio Santi¹, Rodrigo Castro^{1,2} Soon Yung Jun, Krzysztof Genser, Daniel Elvira³ 1 Universidad de Buenos Aires 2 ICC-CONICET 3 FNAL

Geant4 21st Collaboration Meeting 12-16 September 2016

Table of contents

- 2 [Quantized State System \(QSS\) methods](#page-5-0)
	- [Definition](#page-6-0)
	- [QSS features](#page-14-0)
	- [Standalone tool: QSS Solver](#page-14-0)
	- [Preliminary comparison between Geant4 and QSS Solver](#page-15-0)
- 3 [Geant4 to QSS Link \(GQLink\): an implementation of QSS within](#page-16-0) [Geant4](#page-16-0)
	- [Technical aspects](#page-17-0)
	- [CMS application analysis](#page-19-0)
	- [Alternative scenarios](#page-22-0)
- **4** [Conclusions and future work](#page-23-0)

[Introduction](#page-2-0)

- Simulation in HEP involves numerical solutions to ODE systems in order to determine the trajectories described by charged particles in a magnetic field.
- As a particle moves through a detector, each volume crossing interrupts the underlying numerical solver.
- Traditional methods invest considerable computational efforts to handle these discontinuities accurately (detection of intersection points).
- Quantized State System methods (QSS, Kofman 2001 [\[4\]](#page-48-0)) are a novel family of numerical integration methods exhibiting attractive features for this type of HEP simulation.
- The goals pursued in this work are:
	- \triangleright To develop a proof-of-concept implementation of QSS within Geant4,
	- \triangleright To address its suitability as an alternative production integrator, and
	- \triangleright To evaluate its performance in a realistic HEP application.

[Quantized State System \(QSS\)](#page-5-0) [methods](#page-5-0)

- QSS methods are based on state variable quantization.
- As opposed to traditional solvers which discretize time (e.g., Runge-Kutta family) QSS discretizes the system's state.
- State variables are thus approximated by quantized variables.
- • The relation between both is given by a quantization function which is in charge of the accuracy control.

QSS1: first order quantization function

$$
q_i(t) = \begin{cases} x_i(t) & \text{if } |q_i(t^-) - x_i(t)| \geq \Delta Q_i \\ q_i(t^-) & \text{otherwise} \end{cases}
$$

- ΔQ_i is the **quantum**.
	- \blacktriangleright Maximum deviation allowed between x_i and q_i (error control).
	- \triangleright Derived from the precision demanded by the user.
- Higher order methods $(QSSn)$ follow essentially the same principle.
	- From the definition above, in QSS1 $q(t)$ follows piecewise constant trajectories.
	- ► In QSSn, $q(t)$ is composed of piecewise $(n 1)$ -th order polynomials.
- QSS features attractive for HEP problems
	- \triangleright Asynchronicity

Decoupled, independent computation of changes in states variables.

- \blacktriangleright Lightweight discontinuity handling Boundary crossings detected by solving simple (polynomial) zero-crossing functions.
- \triangleright Dense trajectory output
- Selected speedups reported for QSS vs. time-slicing methods in large simulation models [\[3\]](#page-47-0)[\[1\]](#page-47-1)
	- \blacktriangleright 30x in advection reaction models (10⁴ state variables)
	- \blacktriangleright 35x in logic inverters chain (10³ state variables)
	- \blacktriangleright 100x in large spiking neurons models (4000 neurons, 80 connections per neuron)
	- \blacktriangleright 100x to 1000x in cellular division models (100 cells, 600 state variables)
- The QSS Solver [\[2\]](#page-47-2) is an open-source standalone simulation tool.
- Provides C implementations for several QSS methods.
- Provides also implementations of some traditional algorithms (e.g., Dormand-Prince method).
- • Our GQLink interface partially relies on the QSS Solver's simulation engine.

Preliminary comparison between Geant4 and QSS Solver

- Circular 2D particle motion, uniform magnetic field, equidistant parallel crossing planes.
	- \triangleright Known exact analytic solution facilitates error analysis.
	- \blacktriangleright Physics processes turned off.

• With 200 plane crossings and a track length of 100 m, QSS Solver is $8x$ faster than Geant4[\[5\]](#page-48-1). 13

[Geant4 to QSS Link \(GQLink\):](#page-16-0) [an implementation of QSS within](#page-16-0) [Geant4](#page-16-0)

GQLink: QSS within Geant4

- GQLink is a proof-of-concept implementation of QSS in Geant4.
- It is based on:
	- ▶ Version 10.02.p01 of Geant4 (released February 26, 2016).
	- \triangleright QSS Solver engine source code as of March 2016.
- Provides three new shared libraries to Geant4:
	- \blacktriangleright libgss: QSS core functionality.
	- \triangleright libgqlink: interface API between Geant4 and QSS.
	- \triangleright libmodel: model definition and structure (i.e., Lorentz equations).
- It is not a new Geant4 stepper, but an abstract, clean, single entry point interface to the QSS Solver library.
- • QSS methods have complete control over the propagation for each Geant4 transportation step.
	- ▶ Usual accuracy parameters (e.g., deltaOneStep) do not affect GQLink simulations.
	- \triangleright QSS manages accuracy in its own terms (through the control of the quantum ∆Q).

Detection of boundary crossings

- Boundary crossings are detected through Geant4's geometry library.
- Follows same call pattern as in standard Geant4 simulations:
	- ► LocateGlobalPointWithinVolume
	- \blacktriangleright IntersectChord
	- \blacktriangleright EstimateIntersectionPoint
- Improvement:
	- ► Geant4's AccurateAdvance no longer used inside EstimateIntersectionPoint.
	- \triangleright Cheaper particle transport until the crossing point (QSS polynomial dense output).
- QSS features (i.e., dense output) not fully exploited yet.

CMS application analysis

- GQLink validation was performed against a CMS application featuring:
	- \blacktriangleright Full detector geometry.
	- \triangleright Volume base magnetic field.
	- ► Particle gun shooting π^- particles (10 GeV, 10⁴ events).
	- **I** Pythia $pp \rightarrow H \rightarrow ZZ$ (*Z* to all channels) ($\sqrt{s} = 14$ TeV, 50 events).
- Step count distribution for π^- (left) and secondary electrons (right) (10⁴ single π^- events):

CMS application: performance comparison

- Pythia events
	- ► GQLink \sim 49% slower (6.67 hours vs. 4.46 hours).
- Geant4 stepper: G4ClassicalRK4 (accuracy set to $\epsilon=10^{-5}$).
- GQLink currently uses QSS3, a third order method, whereas Geant4 uses fourth order Runge-Kutta methods.
- The observed simulation time can be partially explained by this fact, since lower order methods typically require more computational steps to achieve the same accuracy.
- QSS4 is still experimental, but GQLink will transparently support it once it becomes available.

Alternative scenario: helix and parallel planes

- Different scenario: helix trajectory crossing parallel equidistant planes & more frequent boundary crossings.
- No stepwise abrupt changes in the direction/velocity of the particle.
	- \blacktriangleright i.e., physics processes turned off.
- Using G4ClassicalRK4 stepper (accuracy set to $\epsilon=10^{-5}$).

• GQLink outperforms Geant4 when using ≥ 200 planes (∼42% faster for 500 planes). 19

[Conclusions and future work](#page-23-0)

Conclusions

- We developed **GQLink**, a prototype for QSS methods within Geant4.
- Validation: number of steps and tracks produced are statistically consistent with Geant4's for both toy examples and realistic HEP applications.
- Performance:
	- \triangleright We found that GQLink can outperform Geant4 on certain simplified scenarios.
	- \blacktriangleright Preliminary tests revealed GQLink is currently \sim 34% slower than standard Geant4 in a full CMS realistic scenario (using single π^+ events).
- We aim at performing with GQLink, automatically:
	- \triangleright At least no worse than standard Geant4 in the general case.
	- \triangleright Much better than Geant4 in those cases that leverage combinations of QSS features (scenario–dependent, e.g. intense boundary crossing).
- From an abstract viewpoint, GQLink also opens new possibilities to interface Geant4 with any external stepper.
- Exploit fully the QSS capabilities for efficient geometry crossing detection.
- Improve the performance of QSS for the reinitialization of momentum variables forced from Geant4 upon starting a new step.
- Rodrigo Castro and Nicolás Ponieman (QSS team at UBA-CONICET)
- Federico Bergero, Joaquín Fernández and Ernesto Kofman (QSS team at UNR-CONICET)
- Soon Yung Jun, Krzysztof Genser and Daniel Elvira (FNAL)

Thank you! Questions? [Backup slides](#page-28-0)

QSS: definition

• Consider the initial-value problem

$$
\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}
$$

• QSS simulates the following approximate system,

$$
\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{q}(t)) \\ \mathbf{q}(t_0) = \mathbf{x}_0 \end{cases}
$$

where $\mathbf{x}(t)$ and $\mathbf{q}(t)$ are related by a quantization function.

• In QSS1, $q(t)$ follows piecewise constant trajectories, and we have that

$$
\dot{x}(t)=f(q(t))
$$

 \Rightarrow x(t) follows piecewise linear trajectories.

- However, in higher order QSS methods we cannot derive similar conclusions for an arbitrary nonlinear f.
- To overcome this, $QSSn$ approximates f through its Taylor expansion up to the n -th term.
	- In general, derivatives of f are computed numerically.
- Using this, it can be seen that $x(t)$ is composed of piecewise *n*-th order polynomials in QSSn.
- An integration step occurs when the difference between $q(t)$ and its related $x(t)$ equals the quantum, ΔQ .
	- \rightarrow q(t) needs to be recomputed using the quantization function.
	- Any other state variable whose derivative depends on $q(t)$ has to be reevaluated too.
	- \blacktriangleright Finally, quantization times (i.e., times of the upcoming integration steps) are updated using these new polynomial expressions (by computing polynomial roots).

QSS3 sample plot

Quantization in QSS3

- Suppose an integration step on time t_j .
- $q(t)$ is recomputed using the Taylor expansion of $x(t)$ up to its third term:

$$
x(t) \approx \underbrace{x(t_j) + \dot{x}(t_j)(t-t_j) + \frac{\ddot{x}(t_j)}{2}(t-t_j)^2}_{q(t)}
$$

• In QSS3, $x(t)$ is composed of piecewise cubic polynomials. Then,

$$
x(t) = a_0 + a_1 (t - t_k) + a_2 (t - t_k)^2 + a_3 (t - t_k)^3
$$

where $t_k < t_j$ is last time on which $\mathit{x}(t)$ was updated.

- Thus,
	- $\blacktriangleright \dot{x}(t_j) = a_1 + 2 a_2 \left(t_j t_k \right) + 3 a_3 \left(t_j t_k \right)^2$
	- \triangleright $\ddot{x}(t_i) = 2a_2 + 6a_3(t_i t_k)$

Quantized approximation of Lorentz equations

Lorentz equations

$$
\begin{cases}\n\dot{x} = v_x & \dot{v}_x = \frac{q c^2}{m \gamma} \cdot (v_y B_z - v_z B_y) \\
\dot{y} = v_y & \dot{v}_y = \frac{q c^2}{m \gamma} \cdot (v_z B_x - v_x B_z) \\
\dot{z} = v_z & \dot{v}_z = \frac{q c^2}{m \gamma} \cdot (v_x B_y - v_y B_x)\n\end{cases}
$$

• x, y, z, v_x, v_y, v_z are the state variables

⇓

Quantized approximation

$$
\begin{cases}\n\dot{x} = q_{v_x} & \dot{v_x} = \frac{q c^2}{m \gamma} \cdot (q_{v_y} B_z - q_{v_z} B_y) \\
\dot{y} = q_{v_y} & \dot{v_y} = \frac{q c^2}{m \gamma} \cdot (q_{v_z} B_x - q_{v_x} B_z) \\
\dot{z} = q_{v_z} & \dot{v_z} = \frac{q c^2}{m \gamma} \cdot (q_{v_x} B_y - q_{v_y} B_x)\n\end{cases}
$$

• Each state variable s is approximated by the quantized variable q_s

QSS Solver

- Models are written in the μ -Modelica language (more detail next).
- Offers native implementations of:
	- \blacktriangleright Standard QSS methods (QSS1, QSS2, QSS3, QSS4¹)
	- \triangleright A QSS method for marginally stable systems (CQSS)
	- ▶ QSS methods for stiff systems (LIQSS1, LIQSS2, LIQSS3)
	- ▶ Dormand-Prince method (DOPRI5)
	- \triangleright Differential/Algebraic System Solver method (DASSL)
- Simulations can be run in parallel (in a shared memory environment).

¹Still experimental

μ -Modelica language

- Subset of the standard Modelica modeling language.
	- \triangleright Free, high-level, object-oriented language for modeling of large, complex, and heterogeneous systems.
- Models are mathematically described by differential, algebraic and discrete equations.

Example: Lorentz equations in GQLink

```
Bx = GQLink_GetBx(x,y,z);By = GQLink_GetBy(x,y,z);
```

```
Bz = GQLink_GetBz(x,y,z);
```

```
der(x) = vx;der(y) = vy;der(z) = vz;
der(vx) = (q * c * c / (m * gamma)) * (Bz * vy - By * vz);der(vy) = (q * c * c / (m * gamma)) * (Bx * vz - Bz * vx);der(vz) = (q * c * c / (m * gamma)) * (By * vx - Bx * vy);
```
Stepping in GQLink: sequence diagram

Boundary detection through QSS polynomials

- We developed a prototype of boundary detection using QSS polynomials for regular boxes.
- Computation of a polynomial root instantly yields the time at which the boundary will be crossed.

Profiling of GQLink ComputeStep

Step count distribution $(10^4$ single π^- events) - $1/7$

Figure 1: π^- steps 34

Step count distribution $(10^4$ single π^- events) - $2/7$

Figure 2: secondary electron steps 35

Step count distribution $(10^4$ single π^- events) - 3/7

Figure 3: secondary e^+ steps 36

Step count distribution $(10^4$ single π^- events) - 4/7

Figure 4: secondary π^+ steps $\qquad \qquad$ 37

Step count distribution $(10^4$ single π^- events) - $\mathbf{5}/\mathbf{7}$

Figure 5: secondary γ steps 38

Step count distribution $(10^4$ single π^- events) - $\bf 6/7$

Figure 6: secondary proton steps 39

Step count distribution $(10^4$ single π^- events) - $7/7$

Figure 7: other secondaries steps 40

References I

量 F. Bergero, J. Fernndez, E. Kofman, and M. Portapila. Quantized State Simulation of Advection–Diffusion–Reaction Equations.

In Mecánica Computacional, volume XXXII, pages 1103-1119, Mendoza, Argentina, 2013. Asociación Argentina de Mecánica Computacional.

 \Box J. Fernández and E. Kofman.

A Stand–Alone Quantized State System Solver. Part I. In Proc. of RPIC 2013, Bariloche, Argentina, 2013.

S. G. Grinblat, H. Ahumada, and E. Kofman. Quantized State Simulation of Spiking Neural Networks. Simulation: Transactions of the Society for Modeling and Simulation International, 88(3):299–313, 2012.

譶

Ħ E. Kofman and S. Junco.

Quantized State Systems. A DEVS Approach for Continuous System Simulation.

Transactions of SCS, 18(3):123–132, 2001.

N. Ponieman.

Aplicación de métodos de integración por cuantificación al simulador de partículas geant4.

Master's thesis, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires., 2015.