GQLink

An implementation of Quantized State System (QSS) methods in Geant4

Lucio Santi¹, Rodrigo Castro^{1,2} Soon Yung Jun, Krzysztof Genser, Daniel Elvira³ ¹Universidad de Buenos Aires ²ICC-CONICET ³FNAL Geant4 21st Collaboration Meeting

12-16 September 2016

Table of contents

- 2 Quantized State System (QSS) methods
 - Definition
 - QSS features
 - Standalone tool: QSS Solver
 - Preliminary comparison between Geant4 and QSS Solver
- 3 Geant4 to QSS Link (GQLink): an implementation of QSS within Geant4
 - Technical aspects
 - CMS application analysis
 - Alternative scenarios
- **4** Conclusions and future work

Introduction

- Simulation in HEP involves numerical solutions to ODE systems in order to determine the trajectories described by charged particles in a magnetic field.
- As a particle moves through a detector, each volume crossing interrupts the underlying numerical solver.
- Traditional methods invest considerable computational efforts to handle these discontinuities accurately (detection of intersection points).

- Quantized State System methods (QSS, Kofman 2001 [4]) are a novel family of numerical integration methods exhibiting attractive features for this type of HEP simulation.
- The goals pursued in this work are:
 - ► To develop a proof-of-concept implementation of QSS within Geant4,
 - ► To address its suitability as an alternative production integrator, and
 - ► To evaluate its performance in a realistic HEP application.

Quantized State System (QSS) methods

- QSS methods are based on state variable quantization.
- As opposed to traditional solvers which discretize time (e.g., Runge-Kutta family) QSS discretizes the system's state.
- State variables are thus approximated by quantized variables.
- The relation between both is given by a **quantization function** which is in charge of the **accuracy control**.

ODE system		Quantized system
$\dot{x}(t) = f(x(t))$	\Rightarrow	$\dot{x}(t) = f(q(t))$

QSS1: first order quantization function

$$q_i(t) = egin{cases} x_i(t) & ext{if } \left| q_i(t^-) - x_i(t)
ight| \geq \Delta Q_i \ q_i(t^-) & ext{otherwise} \end{cases}$$

- ΔQ_i is the **quantum**.
 - ▶ Maximum deviation allowed between *x_i* and *q_i* (error control).
 - Derived from the precision demanded by the user.
- Higher order methods (QSSn) follow essentially the same principle.
 - ▶ From the definition above, in QSS1 q(t) follows piecewise constant trajectories.
 - ▶ In QSS*n*, q(t) is composed of piecewise (n-1)-th order polynomials.

- QSS features attractive for HEP problems
 - Asynchronicity

Decoupled, independent computation of changes in states variables.

Lightweight discontinuity handling

Boundary crossings detected by solving simple (polynomial) zero-crossing functions.

- Dense trajectory output
- Selected speedups reported for QSS vs. time-slicing methods in large simulation models [3][1]
 - ▶ 30x in advection reaction models (10⁴ state variables)
 - ▶ 35x in logic inverters chain (10³ state variables)
 - ► 100x in large spiking neurons models (4000 neurons, 80 connections per neuron)
 - ► 100x to 1000x in cellular division models (100 cells, 600 state variables)

- The QSS Solver [2] is an open-source standalone simulation tool.
- Provides C implementations for several QSS methods.
- Provides also implementations of some traditional algorithms (e.g., Dormand-Prince method).
- Our **GQLink interface** partially relies on the QSS Solver's simulation engine.

Preliminary comparison between Geant4 and QSS Solver

- Circular 2D particle motion, uniform magnetic field, equidistant parallel crossing planes.
 - Known exact analytic solution facilitates error analysis.
 - Physics processes turned off.

• With 200 plane crossings and a track length of 100 m, QSS Solver is 8x faster than Geant4[5].

Geant4 to QSS Link (GQLink): an implementation of QSS within Geant4

GQLink: QSS within Geant4

- GQLink is a proof-of-concept implementation of QSS in Geant4.
- It is based on:
 - ▶ Version 10.02.p01 of Geant4 (released February 26, 2016).
 - ► QSS Solver engine source code as of March 2016.
- Provides three new shared libraries to Geant4:
 - libqss: QSS core functionality.
 - libgqlink: interface API between Geant4 and QSS.
 - ▶ libmodel: model definition and structure (i.e., Lorentz equations).
- It is not a new Geant4 stepper, but an abstract, clean, single entry point interface to the QSS Solver library.
- QSS methods have complete control over the propagation for each Geant4 transportation step.
 - Usual accuracy parameters (e.g., deltaOneStep) do not affect GQLink simulations.
 - ► QSS manages accuracy in its own terms (through the control of the quantum ∆Q).

Detection of boundary crossings

- Boundary crossings are detected through Geant4's geometry library.
- Follows same call pattern as in standard Geant4 simulations:
 - LocateGlobalPointWithinVolume
 - IntersectChord
 - EstimateIntersectionPoint
- Improvement:
 - Geant4's AccurateAdvance no longer used inside EstimateIntersectionPoint.
 - Cheaper particle transport until the crossing point (QSS polynomial dense output).
- QSS features (i.e., dense output) not fully exploited yet.

CMS application analysis

- GQLink validation was performed against a CMS application featuring:
 - Full detector geometry.
 - Volume base magnetic field.
 - Particle gun shooting π^- particles (10 GeV, 10⁴ events).
 - ▶ Pythia $pp \rightarrow H \rightarrow ZZ$ (Z to all channels) ($\sqrt{s} = 14$ TeV, 50 events).
- Step count distribution for π^- (left) and secondary electrons (right) (10⁴ single π^- events):

CMS application: performance comparison

- Pythia events
 - GQLink \sim 49% slower (6.67 hours vs. 4.46 hours).
- Geant4 stepper: G4ClassicalRK4 (accuracy set to $\epsilon = 10^{-5}$).

- GQLink currently uses QSS3, a third order method, whereas Geant4 uses fourth order Runge-Kutta methods.
- The observed simulation time can be partially explained by this fact, since lower order methods typically require more computational steps to achieve the same accuracy.
- QSS4 is still experimental, but GQLink will transparently support it once it becomes available.

Alternative scenario: helix and parallel planes

- Different scenario: helix trajectory crossing parallel equidistant planes & more frequent boundary crossings.
- No stepwise abrupt changes in the direction/velocity of the particle.
 - ► i.e., physics processes turned off.
- Using G4ClassicalRK4 stepper (accuracy set to $\epsilon = 10^{-5}$).

• GQLink outperforms Geant4 when using \geq 200 planes (~42% faster for 500 planes).

Conclusions and future work

Conclusions

- We developed **GQLink**, a prototype for QSS methods within Geant4.
- Validation: number of steps and tracks produced are statistically consistent with Geant4's for both toy examples and realistic HEP applications.
- Performance:
 - We found that GQLink can outperform Geant4 on certain simplified scenarios.
 - Preliminary tests revealed GQLink is currently ~34% slower than standard Geant4 in a full CMS realistic scenario (using single π⁻ events).
- We aim at performing with GQLink, automatically:
 - ► At least no worse than standard Geant4 in the general case.
 - Much better than Geant4 in those cases that leverage combinations of QSS features (scenario-dependent, e.g. intense boundary crossing).
- From an abstract viewpoint, GQLink also opens new possibilities to interface Geant4 with any external stepper.

- Exploit fully the QSS capabilities for efficient geometry crossing detection.
- Improve the performance of QSS for the reinitialization of momentum variables forced from Geant4 upon starting a new step.

- Rodrigo Castro and Nicolás Ponieman (QSS team at UBA-CONICET)
- Federico Bergero, Joaquín Fernández and Ernesto Kofman (QSS team at UNR-CONICET)
- Soon Yung Jun, Krzysztof Genser and Daniel Elvira (FNAL)

Thank you! Questions?

Backup slides

QSS: definition

• Consider the initial-value problem

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$

• QSS simulates the following approximate system,

$$egin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{q}(t)) \ \mathbf{q}(t_0) = \mathbf{x}_0 \end{cases}$$

where $\mathbf{x}(t)$ and $\mathbf{q}(t)$ are related by a quantization function.

• In QSS1, q(t) follows piecewise constant trajectories, and we have that

$$\dot{x}(t) = f(q(t))$$

 $\Rightarrow x(t)$ follows piecewise linear trajectories.

- However, in higher order QSS methods we cannot derive similar conclusions for an arbitrary nonlinear *f*.
- To overcome this, QSS*n* approximates *f* through its Taylor expansion up to the *n*-th term.
 - ► In general, derivatives of *f* are computed numerically.
- Using this, it can be seen that x(t) is composed of piecewise *n*-th order polynomials in QSS*n*.

- An integration step occurs when the difference between q(t) and its related x(t) equals the quantum, ΔQ .
 - q(t) needs to be recomputed using the quantization function.
 - ► Any other state variable whose derivative depends on q(t) has to be reevaluated too.
 - Finally, quantization times (i.e., times of the upcoming integration steps) are updated using these new polynomial expressions (by computing polynomial roots).

QSS3 sample plot

Quantization in QSS3

- Suppose an integration step on time t_j .
- q(t) is recomputed using the Taylor expansion of x(t) up to its third term:

$$x(t) \approx \underbrace{x(t_j) + \dot{x}(t_j)(t - t_j) + \frac{\ddot{x}(t_j)}{2}(t - t_j)^2}_{q(t)}$$

• In QSS3, x(t) is composed of piecewise cubic polynomials. Then,

$$x(t) = a_0 + a_1 (t - t_k) + a_2 (t - t_k)^2 + a_3 (t - t_k)^3$$

where $t_k < t_j$ is last time on which x(t) was updated.

- Thus,
 - $\dot{x}(t_j) = a_1 + 2a_2(t_j t_k) + 3a_3(t_j t_k)^2$
 - $\bullet \ \ddot{x}(t_j) = 2a_2 + 6a_3(t_j t_k)$

Quantized approximation of Lorentz equations

Lorentz equations

$$\begin{cases} \dot{x} = v_x & \dot{v_x} = \frac{q c^2}{m \gamma} \cdot (v_y B_z - v_z B_y) \\ \dot{y} = v_y & \dot{v_y} = \frac{q c^2}{m \gamma} \cdot (v_z B_x - v_x B_z) \\ \dot{z} = v_z & \dot{v_z} = \frac{q c^2}{m \gamma} \cdot (v_x B_y - v_y B_x) \end{cases}$$

• x, y, z, v_x, v_y, v_z are the state variables

\Downarrow

Quantized approximation

$$\begin{cases} \dot{x} = \boldsymbol{q}_{\boldsymbol{v}_{x}} & \dot{v}_{x} = \frac{q\,c^{2}}{m\,\gamma} \cdot (\boldsymbol{q}_{\boldsymbol{v}_{y}} \, B_{z} - \boldsymbol{q}_{\boldsymbol{v}_{z}} \, B_{y}) \\ \dot{y} = \boldsymbol{q}_{\boldsymbol{v}_{y}} & \dot{v}_{y} = \frac{q\,c^{2}}{m\,\gamma} \cdot (\boldsymbol{q}_{\boldsymbol{v}_{z}} \, B_{x} - \boldsymbol{q}_{\boldsymbol{v}_{x}} \, B_{z}) \\ \dot{z} = \boldsymbol{q}_{\boldsymbol{v}_{z}} & \dot{v}_{z} = \frac{q\,c^{2}}{m\,\gamma} \cdot (\boldsymbol{q}_{\boldsymbol{v}_{x}} \, B_{y} - \boldsymbol{q}_{\boldsymbol{v}_{y}} \, B_{x}) \end{cases}$$

• Each state variable s is approximated by the quantized variable qs

QSS Solver

- Models are written in the μ -Modelica language (more detail next).
- Offers native implementations of:
 - Standard QSS methods (QSS1, QSS2, QSS3, QSS4¹)
 - A QSS method for marginally stable systems (CQSS)
 - QSS methods for stiff systems (LIQSS1, LIQSS2, LIQSS3)
 - Dormand-Prince method (DOPRI5)
 - Differential/Algebraic System Solver method (DASSL)
- Simulations can be run in parallel (in a shared memory environment).

The Month	able Cablers	staticB.mo 🕱	
file Varii ¥ staticB ₩ ₩	able Settings « lines y lines	1 y = 0 1 y = 0 1 y = 0 1 def(a) = 0 2 deportunit 2 deportunit 2 deportunit 4 MAX_PARADE (00), 2 deportunit 3 MAX_PARADE (00), 3 MAX_PARADE (00), 4 MAX_PARADE (00), 3 MAX_PARADE (00), 4 MAX_PARADE (00), 4 MAX_PARADE (00), 4 MAX_PARADE (00), 5 MAX_PARADE (00)	
@Messages			
Running mak make -f /hon Binary file ge Creating/cles	vefile. ve/nico/Documents/b nerated, ready to sta aning directory: /hom	ssia/guengine-code 0/build/static8/static8.makefile et sismiation. e/mico/Documents/tesi/gusengine-code 0/output/static8	

¹Still experimental

μ -Modelica language

- Subset of the standard Modelica modeling language.
 - Free, high-level, object-oriented language for modeling of large, complex, and heterogeneous systems.
- Models are mathematically described by differential, algebraic and discrete equations.

Example: Lorentz equations in GQLink

```
Bx = GQLink_GetBx(x,y,z);
By = GQLink_GetBy(x,y,z);
Bz = GQLink_GetBz(x,y,z);
```

```
der(x) = vx;
der(y) = vy;
der(z) = vz;
der(vx) = (q*c*c / (m*gamma)) * (Bz*vy - By*vz);
der(vy) = (q*c*c / (m*gamma)) * (Bx*vz - Bz*vx);
der(vz) = (q*c*c / (m*gamma)) * (By*vx - Bx*vy);
```

Stepping in GQLink: sequence diagram

Boundary detection through QSS polynomials

- We developed a prototype of boundary detection using QSS polynomials for regular boxes.
- Computation of a polynomial root instantly yields the time at which the boundary will be crossed.

Profiling of GQLink_ComputeStep

Step count distribution (10⁴ single π^- events) - 1/7

Figure 1: π^- steps

Step count distribution (10⁴ single π^- events) - 2/7

Figure 2: secondary electron steps

Step count distribution (10⁴ single π^- events) - 3/7

Figure 3: secondary e^+ steps

Step count distribution (10⁴ single π^- events) - 4/7

Figure 4: secondary π^+ steps

Step count distribution (10⁴ single π^- events) - 5/7

Figure 5: secondary γ steps

Step count distribution (10⁴ single π^- events) - 6/7

Figure 6: secondary proton steps

Step count distribution (10⁴ single π^- events) - 7/7

Figure 7: other secondaries steps

References I

F. Bergero, J. Fernndez, E. Kofman, and M. Portapila.
 Quantized State Simulation of Advection–Diffusion–Reaction
 Equations.

In *Mecánica Computacional*, volume XXXII, pages 1103–1119, Mendoza, Argentina, 2013. Asociación Argentina de Mecánica Computacional.

J. Fernández and E. Kofman.

A Stand-Alone Quantized State System Solver. Part I. In Proc. of RPIC 2013, Bariloche, Argentina, 2013.

G. Grinblat, H. Ahumada, and E. Kofman. Quantized State Simulation of Spiking Neural Networks. Simulation: Transactions of the Society for Modeling and Simulation International, 88(3):299–313, 2012.

E. Kofman and S. Junco.

Quantized State Systems. A DEVS Approach for Continuous System Simulation.

Transactions of SCS, 18(3):123-132, 2001.

N. Ponieman.

Aplicación de métodos de integración por cuantificación al simulador de partículas geant4.

Master's thesis, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires., 2015.