
GQLink

An implementation of Quantized State System (QSS) methods in Geant4

Lucio Santi1, Rodrigo Castro1,2

Soon Yung Jun, Krzysztof Genser, Daniel Elvira3

1Universidad de Buenos Aires 2ICC-CONICET 3FNAL

Geant4 21st Collaboration Meeting

12-16 September 2016



Table of contents

1 Introduction

2 Quantized State System (QSS) methods

Definition

QSS features

Standalone tool: QSS Solver

Preliminary comparison between Geant4 and QSS Solver

3 Geant4 to QSS Link (GQLink): an implementation of QSS within

Geant4

Technical aspects

CMS application analysis

Alternative scenarios

4 Conclusions and future work

1



Introduction



Motivation of this work

• Simulation in HEP involves numerical solutions to ODE systems in

order to determine the trajectories described by charged particles in

a magnetic field.

• As a particle moves through a detector, each volume crossing

interrupts the underlying numerical solver.

• Traditional methods invest considerable computational efforts to

handle these discontinuities accurately (detection of intersection

points).

2



Motivation of this work

• Quantized State System methods (QSS, Kofman 2001 [4]) are a

novel family of numerical integration methods exhibiting attractive

features for this type of HEP simulation.

• The goals pursued in this work are:

I To develop a proof-of-concept implementation of QSS within Geant4,
I To address its suitability as an alternative production integrator, and
I To evaluate its performance in a realistic HEP application.

3



Quantized State System (QSS)

methods



Quantized State System methods

• QSS methods are based on state variable quantization.

• As opposed to traditional solvers which discretize time (e.g.,

Runge-Kutta family) QSS discretizes the system’s state.

• State variables are thus approximated by quantized variables.

• The relation between both is given by a quantization function

which is in charge of the accuracy control.

ODE system

ẋ(t) = f(x(t)) ⇒

Quantized system

ẋ(t) = f(q(t))

4



QSS: motivational example (perfect oscillator)

Original system{
ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)

Initial conditions{
x1(0) = 4.5

x2(0) = 0.5

Quantization function

qi (t) = bxi (t)c

Quantized system{
ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)

5



QSS: motivational example (perfect oscillator)

Original system{
ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)

Initial conditions{
x1(0) = 4.5

x2(0) = 0.5

Quantization function

qi (t) = bxi (t)c

Quantized system{
ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)

6



QSS: motivational example (perfect oscillator)

Original system{
ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)

Initial conditions{
x1(0) = 4.5

x2(0) = 0.5

Quantization function

qi (t) = bxi (t)c

Quantized system{
ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)

7



QSS: motivational example (perfect oscillator)

Original system{
ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)

Initial conditions{
x1(0) = 4.5

x2(0) = 0.5

Quantization function

qi (t) = bxi (t)c

Quantized system{
ẋ1(t) = q2(t)

ẋ2(t) = −q1(t)

8



QSS: motivational example (perfect oscillator)

9



QSS1: first order quantization function

qi (t) =

xi (t) if
∣∣qi (t−)− xi (t)

∣∣ ≥ ∆Qi

qi (t
−) otherwise

• ∆Qi is the quantum.

I Maximum deviation allowed between xi and qi (error control).
I Derived from the precision demanded by the user.

• Higher order methods (QSSn) follow essentially the same principle.

I From the definition above, in QSS1 q(t) follows piecewise constant

trajectories.
I In QSSn, q(t) is composed of piecewise (n− 1)-th order polynomials.

10



QSS features

• QSS features attractive for HEP problems

I Asynchronicity

Decoupled, independent computation of changes in states variables.
I Lightweight discontinuity handling

Boundary crossings detected by solving simple (polynomial)

zero-crossing functions.
I Dense trajectory output

• Selected speedups reported for QSS vs. time-slicing methods in large

simulation models [3][1]
I 30x in advection reaction models (104 state variables)
I 35x in logic inverters chain (103 state variables)
I 100x in large spiking neurons models (4000 neurons, 80 connections

per neuron)
I 100x to 1000x in cellular division models (100 cells, 600 state

variables)

11



Standalone tool: QSS Solver

• The QSS Solver [2] is an open-source standalone simulation tool.

• Provides C implementations for several QSS methods.

• Provides also implementations of some traditional algorithms (e.g.,

Dormand-Prince method).

• Our GQLink interface partially relies on the QSS Solver’s

simulation engine.

12



Preliminary comparison between Geant4 and QSS Solver

• Circular 2D particle motion, uniform magnetic field, equidistant

parallel crossing planes.
I Known exact analytic solution facilitates error analysis.
I Physics processes turned off.

• With 200 plane crossings and a track length of 100 m, QSS Solver is

8x faster than Geant4[5]. 13



Geant4 to QSS Link (GQLink):

an implementation of QSS within

Geant4



GQLink: QSS within Geant4

• GQLink is a proof-of-concept implementation of QSS in Geant4.

• It is based on:
I Version 10.02.p01 of Geant4 (released February 26, 2016).
I QSS Solver engine source code as of March 2016.

• Provides three new shared libraries to Geant4:
I libqss: QSS core functionality.
I libgqlink: interface API between Geant4 and QSS.
I libmodel: model definition and structure (i.e., Lorentz equations).

• It is not a new Geant4 stepper, but an abstract, clean, single

entry point interface to the QSS Solver library.

• QSS methods have complete control over the propagation for each

Geant4 transportation step.
I Usual accuracy parameters (e.g., deltaOneStep) do not affect

GQLink simulations.
I QSS manages accuracy in its own terms (through the control of the

quantum ∆Q).

14



Detection of boundary crossings

• Boundary crossings are detected through Geant4’s geometry library.

• Follows same call pattern as in standard Geant4 simulations:

I LocateGlobalPointWithinVolume

I IntersectChord

I EstimateIntersectionPoint

• Improvement:

I Geant4’s AccurateAdvance no longer used inside

EstimateIntersectionPoint.
I Cheaper particle transport until the crossing point (QSS polynomial

dense output).

• QSS features (i.e., dense output) not fully exploited yet.

15



CMS application analysis

• GQLink validation was performed against a CMS application

featuring:
I Full detector geometry.
I Volume base magnetic field.
I Particle gun shooting π− particles (10 GeV, 104 events).
I Pythia pp → H → ZZ (Z to all channels) (

√
s = 14 TeV, 50 events).

• Step count distribution for π− (left) and secondary electrons (right)

(104 single π− events):

16



CMS application: performance comparison

• Single π− events

I GQLink ∼34% slower.

• Pythia events
I GQLink ∼49% slower (6.67 hours vs. 4.46 hours).

• Geant4 stepper: G4ClassicalRK4 (accuracy set to ε = 10−5).

17



Discussion

• GQLink currently uses QSS3, a third order method, whereas Geant4

uses fourth order Runge-Kutta methods.

• The observed simulation time can be partially explained by this fact,

since lower order methods typically require more computational steps

to achieve the same accuracy.

• QSS4 is still experimental, but GQLink will transparently support it

once it becomes available.

18



Alternative scenario: helix and parallel planes

• Different scenario: helix trajectory crossing parallel equidistant

planes & more frequent boundary crossings.

• No stepwise abrupt changes in the direction/velocity of the particle.
I i.e., physics processes turned off.

• Using G4ClassicalRK4 stepper (accuracy set to ε = 10−5).

• GQLink outperforms Geant4 when using ≥ 200 planes (∼42% faster

for 500 planes). 19



Conclusions and future work



Conclusions

• We developed GQLink, a prototype for QSS methods within Geant4.

• Validation: number of steps and tracks produced are statistically

consistent with Geant4’s for both toy examples and realistic HEP

applications.

• Performance:
I We found that GQLink can outperform Geant4 on certain simplified

scenarios.
I Preliminary tests revealed GQLink is currently ∼34% slower than

standard Geant4 in a full CMS realistic scenario (using single π−

events).

• We aim at performing with GQLink, automatically:
I At least no worse than standard Geant4 in the general case.
I Much better than Geant4 in those cases that leverage combinations

of QSS features (scenario–dependent, e.g. intense boundary

crossing).

• From an abstract viewpoint, GQLink also opens new possibilities to

interface Geant4 with any external stepper.
20



Future work

• Exploit fully the QSS capabilities for efficient geometry crossing

detection.

• Improve the performance of QSS for the reinitialization of

momentum variables forced from Geant4 upon starting a new step.

21



Acknowledgments

• Rodrigo Castro and Nicolás Ponieman (QSS team at

UBA-CONICET)

• Federico Bergero, Joaqúın Fernández and Ernesto Kofman (QSS

team at UNR-CONICET)

• Soon Yung Jun, Krzysztof Genser and Daniel Elvira (FNAL)

22



Thank you!

Questions?

22



Backup slides



QSS: definition

• Consider the initial-value problem

{
ẋ(t) = f(x(t))

x(t0) = x0

• QSS simulates the following approximate system,

{
ẋ(t) = f(q(t))

q(t0) = x0

where x(t) and q(t) are related by a quantization function.

23



QSS: features of x(t)

• In QSS1, q(t) follows piecewise constant trajectories, and we have

that

ẋ(t) = f (q(t))

⇒ x(t) follows piecewise linear trajectories.

• However, in higher order QSS methods we cannot derive similar

conclusions for an arbitrary nonlinear f .

• To overcome this, QSSn approximates f through its Taylor

expansion up to the n-th term.

I In general, derivatives of f are computed numerically.

• Using this, it can be seen that x(t) is composed of piecewise n-th

order polynomials in QSSn.

24



QSS: integration steps

• An integration step occurs when the difference between q(t) and its

related x(t) equals the quantum, ∆Q.

I q(t) needs to be recomputed using the quantization function.
I Any other state variable whose derivative depends on q(t) has to be

reevaluated too.
I Finally, quantization times (i.e., times of the upcoming integration

steps) are updated using these new polynomial expressions (by

computing polynomial roots).

25



QSS3 sample plot

26



Quantization in QSS3

• Suppose an integration step on time tj .

• q(t) is recomputed using the Taylor expansion of x(t) up to its third

term:

x(t) ≈ x(tj) + ẋ(tj) (t − tj) +
ẍ(tj)

2
(t − tj)

2︸ ︷︷ ︸
q(t)

• In QSS3, x(t) is composed of piecewise cubic polynomials. Then,

x(t) = a0 + a1 (t − tk) + a2 (t − tk)2 + a3 (t − tk)3

where tk < tj is last time on which x(t) was updated.

• Thus,
I ẋ(tj) = a1 + 2a2 (tj − tk) + 3a3 (tj − tk)2

I ẍ(tj) = 2a2 + 6a3(tj − tk)
27



Quantized approximation of Lorentz equations

Lorentz equations


ẋ = vx v̇x = q c2

m γ · (vy Bz − vz By )

ẏ = vy v̇y = q c2

m γ · (vz Bx − vx Bz)

ż = vz v̇z = q c2

m γ · (vx By − vy Bx)

• x , y , z , vx , vy , vz are the state variables

⇓
Quantized approximation


ẋ = qvx v̇x = q c2

m γ · (qvy Bz − qvz By )

ẏ = qvy v̇y = q c2

m γ · (qvz Bx − qvx Bz)

ż = qvz v̇z = q c2

m γ · (qvx By − qvy Bx)

• Each state variable s is approximated by the quantized variable qs

28



QSS Solver

• Models are written in the µ-Modelica language (more detail next).

• Offers native implementations of:
I Standard QSS methods (QSS1, QSS2, QSS3, QSS41)
I A QSS method for marginally stable systems (CQSS)
I QSS methods for stiff systems (LIQSS1, LIQSS2, LIQSS3)
I Dormand-Prince method (DOPRI5)
I Differential/Algebraic System Solver method (DASSL)

• Simulations can be run in parallel (in a shared memory environment).

1Still experimental
29



µ-Modelica language

• Subset of the standard Modelica modeling language.
I Free, high-level, object-oriented language for modeling of large,

complex, and heterogeneous systems.

• Models are mathematically described by differential, algebraic and

discrete equations.

Example: Lorentz equations in GQLink

Bx = GQLink_GetBx(x,y,z);

By = GQLink_GetBy(x,y,z);

Bz = GQLink_GetBz(x,y,z);

der(x) = vx;

der(y) = vy;

der(z) = vz;

der(vx) = (q*c*c / (m*gamma)) * (Bz*vy - By*vz);

der(vy) = (q*c*c / (m*gamma)) * (Bx*vz - Bz*vx);

der(vz) = (q*c*c / (m*gamma)) * (By*vx - Bx*vy);

30



Stepping in GQLink: sequence diagram

31



Boundary detection through QSS polynomials

• We developed a prototype of boundary detection using QSS

polynomials for regular boxes.

• Computation of a polynomial root instantly yields the time at which

the boundary will be crossed.

32



Profiling of GQLink ComputeStep

33



Step count distribution (104 single π− events) - 1/7

Figure 1: π− steps 34



Step count distribution (104 single π− events) - 2/7

Figure 2: secondary electron steps 35



Step count distribution (104 single π− events) - 3/7

Figure 3: secondary e+ steps 36



Step count distribution (104 single π− events) - 4/7

Figure 4: secondary π+ steps 37



Step count distribution (104 single π− events) - 5/7

Figure 5: secondary γ steps 38



Step count distribution (104 single π− events) - 6/7

Figure 6: secondary proton steps 39



Step count distribution (104 single π− events) - 7/7

Figure 7: other secondaries steps 40



References I

F. Bergero, J. Fernndez, E. Kofman, and M. Portapila.

Quantized State Simulation of Advection–Diffusion–Reaction

Equations.

In Mecánica Computacional, volume XXXII, pages 1103–1119,

Mendoza, Argentina, 2013. Asociación Argentina de Mecánica

Computacional.

J. Fernández and E. Kofman.

A Stand–Alone Quantized State System Solver. Part I.

In Proc. of RPIC 2013, Bariloche, Argentina, 2013.

G. Grinblat, H. Ahumada, and E. Kofman.

Quantized State Simulation of Spiking Neural Networks.

Simulation: Transactions of the Society for Modeling and Simulation

International, 88(3):299–313, 2012.

41



References II

E. Kofman and S. Junco.

Quantized State Systems. A DEVS Approach for Continuous

System Simulation.

Transactions of SCS, 18(3):123–132, 2001.

N. Ponieman.

Aplicación de métodos de integración por cuantificación al

simulador de part́ıculas geant4.

Master’s thesis, Facultad de Ciencias Exactas y Naturales.

Universidad de Buenos Aires., 2015.

42


	Introduction
	Quantized State System (QSS) methods
	Definition
	QSS features
	Standalone tool: QSS Solver
	Preliminary comparison between Geant4 and QSS Solver

	Geant4 to QSS Link (GQLink): an implementation of QSS within Geant4
	Technical aspects
	CMS application analysis
	Alternative scenarios

	Conclusions and future work

