
Medical Benchmarking
Testing Suite

Andrea Dotti (adotti@slac.stanford.edu) ; SLAC/SD/EPP/Computing
for the Geant4 Medical Simulation Benchmarking Group
Geant4 21st Collaboration Meeting – Ferrara, 12-16 September 2016

Cmake/ctest based integration

https://gitlab.cern.ch/G4MSBG

mailto:adotti@slac.stanford.edu
https://gitlab.cern.ch/G4MSBG

2

Note

This talk introduces the technical aspects of the testing and
integration suite for the Geant4 Medical Simulation
Benchmarking Group

A dedicated parallel session (2A) discusses the physics tests
being implemented in detail

3

Integration

G4MSBG: a set of independent Geant4 applications to test and validate specific aspects of
simulations for medical users (e.g. Bragg peak)

– Focus on applications that allow to compare with real data

Applications are developed by different people following a “style” (e.g. how analysis is
done and how results are presented) that is tailored to the specific problem

However we would like to allow anybody (from the G4MSBG group) to run any of the
validations in a coherent system

– When possible (automatic) statistical testing and comparison with data is encouraged to help
understanding the quality of simulation by a non-expert

4

Choice of tools 1

Project external to Geant4 but aiming at tight integration

Code work model: I’m proposing a simplified git-flow (not
yet enforced), discussion?

Code repository: gitlab @ CERN, with a git group G4MSBG
owning the repository

5

Choice of tools 2

CMake as configuration tool (to simplify integration with
Geant4)

CTest as testing tool
– Pro: Testing is very simple, same platform as Geant4, possible to use

Geant4 cdash for web-presentation (if Gunter agrees)
– Cons: Not easy to use distribute testing on more than one node (that

may be necessary if number of tests continues to grow)

6

Proposed Development Work-flow

master
Developments never go here
Checking out master always compiles and
runs latest version.
Official “version tags” are made here.

Tag V1.0 Tag V1.1

Developments go here. Used for integration
Testing.
You should branch your own development
Branch for specific developments.
Merging to master done by coordinators

devel

BraggPeak-NewDevel
git clone […]
git checkout devel
git checkout ­b BraggPeak­NewDevel
[… new develops …]
git add […] && git commit ­m “comment”
git checkout devel
git merge –no­ff BraggPeak­NewDevel
git branch ­d BraggPeak­NewDevel
git push

7

Packages Organization

G4MSBG
 CmakeLists.txt
 cmake
 BraggPeak
 CMakeLists.txt
 CTestDefinitions.txt
 attenuation
 DPK
 ...

8

Pre-requisites, configuration and compilation

It requires Geant4 already compiled and installed (via cmake)

Some applications depend on ROOT

For testing with ctest (optional):
– Requires StatTest application (see my talk at this session)

● That by itself requires python and ROOT’s python support

 git clone […] && mkdir build && cd build
 cmake ­DGeant4_DIR=<...> [­DG4MSBG_ENABLE_TESTING=ON] ../G4MSBG
 make ­j<N>

It is possible to compile only a single application (see content of generated Makefile for list of targets):
 make ­j<N> BraggPeak

If you are not interested in ctest integration you can also configure/compile a single application with:
 git clone […] && mkdir build­BraggPeak && cd build­BraggPeak
 cmake ­DGeant4_DIR=<...> [­DG4MSBG_ENABLE_TESTING=ON] ../G4MSBG/PraggPeak
 make ­j<N>

9

Testing with ctest: introduction

Based on the code I’ve received and the interaction with developers I’ve created, for each
application a set of “ctests” to perform physics validation.

– In many cases this meant transforming a bash script to a ctest one
– Each run-time configuration corresponds to a separate ctest

● e.g. for BraggPeak application, each input macro is a separate ctest; for TestDEDX2 each combination of
{physicslist,primary,material} is a ctest

Notable difference: since w/ ctest we run tests in parallel one important step is to
(automatically) generate an output directory structure where each test can run in isolation

– This directory structure (and possibly generation of macro files from templates) is created when
“cmake” is executed

10

Testing with ctest: test definition
Testing has to be explicitly enabled when executing cmake

Tests are defined in CTestDefinitions.txt script provided with each application
Type: ctest ­N to see the list of all tests.
Type: ctest ­N ­R <name> to see the list of all tests containing the string <name> (ctest –help for the list of all options).
Test names clearly identify application and test condition, for example:

– Ctest ­N ­R BraggPeak
● BraggPeak_200MeV.INCL
● BraggPeak_200MeV.INCL­checkOutput
● BraggPeak_200MeV.QMD
● BraggPeak_200MeV.QMD­checkOutput
● [...]

Type: ctest ­j <N> [­R <name>] to execute tests
Tests will be executed in parallel (N jobs), but dependencies will be honored when specified (e.g. BraggPeak_200MeV.QMD­
checkOutput is executed iff BraggPeak_200MeV.QMD has been already executed succesfully)

11

Testing with ctest: post-processing

Tests are divided in two phases:
– Step 1: run Geant4 application. An output file (e.g. histogram

file) is produced
– Step 2: run post-processing (e.g. create image) or statistical

testing on the output of Step 1
Step 2 appears as a separate ctest, with name as in Step 1 and
postfix “-checkOutput” or “-postProcessing*”

12

Testing with ctest: StatTest integration

When applicable Pedro has provided the script to run the StatTest utility and
perform regression testing

– Introduced in ctest accordingly

Idea is to be able to compare two G4 versions and perform statistical tests

Need to decide where to store references: proposal is to store them to a web-server at
CERN dedicated for this purpose (so StatTest can found these references
automatically), if Gunter agrees

– It means that developers will have to provide an updated reference from time to time

13

Example: output of ctest for BraggPeak 200MeV.INCL

Red/Blue histograms are the
two versions being compared
P-val and test info are printed
Bottom histogram is residuals
plot and border is color coded:
Green=OK, Red=BAD,
Yellow=NEEDATTANTION

14

Status

Application Total Number of tests StatTest ready

attenuation 10 Yes

BraggPeak 12 Yes

DPK 41 Yes

ElecBackScatBench 352 No, but summary plots created

TestDeDX2 183 No, but summary graphs created

Total 598

FragBenchmarking received but not yet integrated

15

Conclusions

G4MSBG test suite is in gitlab@CERN
Integration with cmake and ctest underway

5 (6) applications received so far and ctest scripts prepared

Note: currently running the complete test-suite will take not less than 12 hours on a 12 cores
server, with the growing number of tests we may need to dedicate some resources to testing if
we want to perform regular testing (I think I can guarantee these at SLAC)

I think the same model could be also used by other Geant4 group of users, we may think about
creating a public web-page with instructions and script templates

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

