

Parallel Session 4B Basic & Extended Examples

I. Hrivnacova, IPN Orsay (CNRS/IN2P3)
P. Gumplinger, TRIUMF

21th Geant4 Collaboration Meeting, 16 September 2016, Ferrara

Agenda

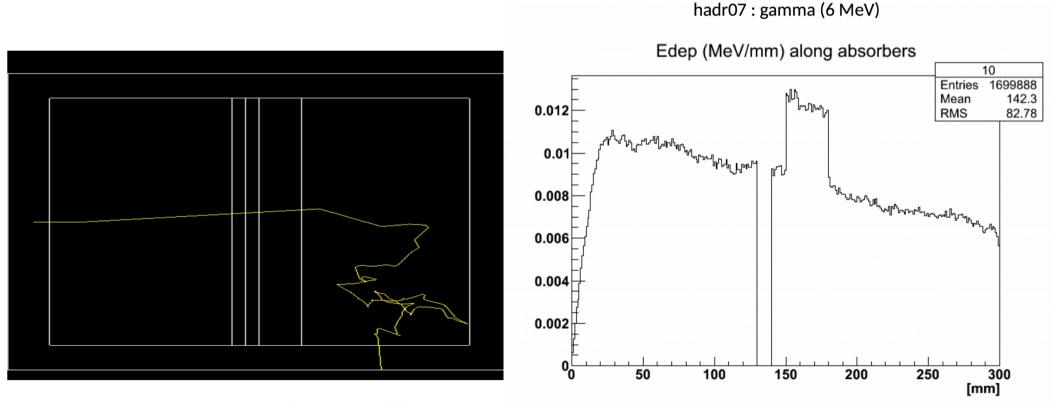
WG work plan status	HRIVNACOVA, Ivana 📄
Aula Magna, Ferrara	16:00 - 16:30
New hadronic examples: Had	Ir07, AmBe MAIRE, Michel
Aula Magna, Ferrara	16:30 - 16:35
New medical/dna/chem4 example example 10 model	mple KARAMITOS, Mathieu 🗎
Aula Magna, Ferrara	16:35 - 16:40
New monitoring example	DOTTI, Andrea et al. 📄
Aula Magna, Ferrara	16:40 - 16:50
Discussion about parameters and integration of hits and analysis framewo	HRIVNACOVA, Ivana et al. 📄
Aula Magna, Ferrara	16:50 - 17:20

Work Plan

New Examples

Analysis & Example & Kernel

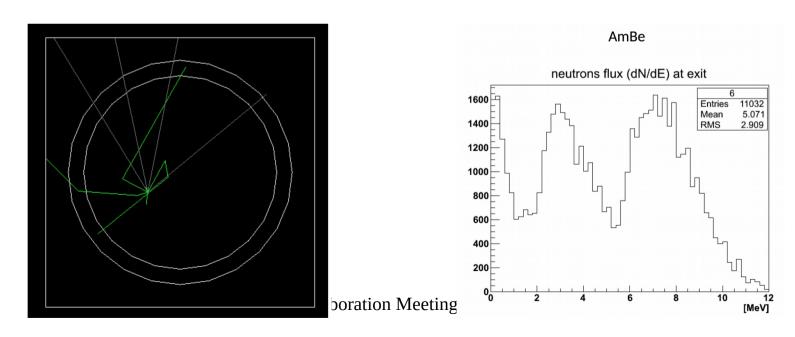
Work Plan 2016


- New in this year
 - Start reviewing macros
- Ongoing improving examples
 - Eliminating obsolete features
 - Coding guidelines
 - A remineder will be send to developers of the examples which are concerned
 - MT migration
 - ~ 14 examples candidates for migration
 - No push from users for migration remaining examples, let's developers decide whether and when they will do it

Discussion Items

- Reminder to Physics List WG the item in the Work plan to create a new directory showing how to create or use a Physics List
- Add C++11 features in basic examples
 - Update B4 (all a,b,c,d variants) and B5 for 10.3 by Ivana and review the modifications by Andrea before proposing a tag
- FindROOT.cmake
 - Use by examples and test; a concern about a possible clash when using ROOT build via Cmake was discussed
 - Decision was taken to keep the file in place to be consistent with all other find files
 - An extra path to Cmake modules has to be set to reach the modules

Hadr07


- By Michel Maire
- Survey energy deposition and particle's flux from a hadronic cascade.

AmBe

By Michel Maire: example of neutrons source. It illustrates the cooperative work of nuclear reactions and radioactive decay processes.

- Change of the name proposed in order to avoid confusion about Geant4 capabilities to simulate Am.
- Message to Hadronic WG: Make sure that particle_hp is properly documented and defined (for environment variables) prior to releasing this
- Message to PhysicsList WG: make sure the physics list follows the factory approach as proposed by the WG.

Chem4

By P. Piersimoni, S. Okada, M. Karamitros The example shows how to activate chemistry code and score the radiochemical yield G.

Radiochemical yields

Radiochemical yields or G-values
 Number of species over time for 100 eV of deposited energy

$$G(t) = \frac{N_{mol}(t) \cdot 100 \ eV}{E_{dep}}$$

- For a given species, irradiation condition, can be compared to experimental values
- Goal of chem4: record the G-values over time for each species

Monitoring

By Andrea Dotti

Demonstrating monitoring of steps/tracks, etc (in collaboration with Q&A WG)

- The code, as it is now, introduces dependence of Run (and other) category on G4Analysis
- More brainstorming needed to avoid this

The LoggingMonitoring Example

SLAC

A set of "monitors" has been created to allow one or mor

- Number of steps
- Number of tracks and time needed to complete
- Number of events and time needed to complete simulation
- Number of runs and time needed to complete simulation

Filters can be associated to each "monitor":

- Filter on particle type
- Filter on energy window
- Filter on geometry volume

Allows for logging to:

- Standard Output
- Histograms (via G4Analysis)
- Ntuples (via G4Analysis)

```
/run/initialize
# Count number of steps of e-
# with 10MeV<E<100MeV in volume "Calo"
/monitoring/step/create myMon1
/monitoring/step/addParticleFilter e- myMon1
/monitoring/step/addEnergyFilter 10 100 myMon1 //in MeV
/monitoring/step/addLogicalVolumeFilter Calo myMon1
# Save info in histograms (binning is automatic):
/monitoring/setOutput Histo file.root
/monitoring/initialize
/run/beamOn 100
/monitoring/finalize</pre>
```

Discussion about parameters and closer integration of analysis in Geant4

Summary of the discussion

- Developments since the last year which did not end in SVN
 - G4ScoringAnalysis class implements automatic saving of scorers hits maps in a file using G4 analysis triggered by UI command
 - Monitoring example
- Introduce classes which use Geant4 classes together with analysis
 - This would make geant4 kernel catagories (digits_hits, run, ...) dependent on analysis - what was found not acceptable
- A new design iteration of scorers + analysis is under discussion with the architectural team
- The G4* classes in monitoring example will we kept in the example in 10.3.
 and their integration in Geant4 kernel will be postponed to the next year