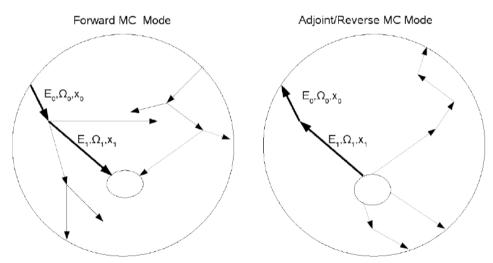
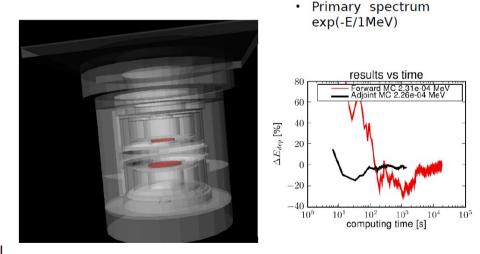

Parallel 5B - Reverse MD and Biasing


Session in the echo chamber – so the discussion was limited...

Alex Howard and Marc Vederi

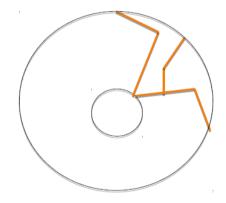
Recent Developments of the Reverse MC (1)

- Development work recently restarted
- Promising results
- Testing with simple shields shows that some further investigation is required

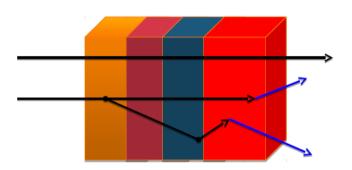

Reverse MC method

Reverse MC

- Start from the tiny sensitive volume
- Reverse tracking with occurence of reverse processes till external sources
- In Geant4 Reverse Compton, Photoe-electric, bremsstrahlung, ionisation e-,protons


Reverse MC example with SREM detector of ESA

Recent Developments of the Reverse MC (2)


- New combined biasing techniques
 - Gamma splitting → factor of 5 speed up
 - Forced interaction → ongoing

Implementation of reverse tracking splitting

- Several tracks can reach the external source during the same event
- The user has now the possibility to split creation of adjoint primary /adjoint/SetNbOfPrimaryAdjGammasPerEvent /adjoint/SetNbOfPrimaryAdjElectronsPerEvent
- Open the possibility to implement other biasing method for reverse tracking

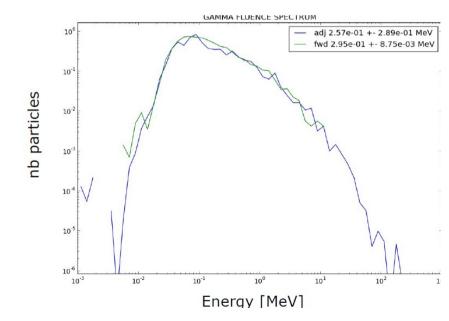
Ongoing Implementation of forced interaction in gamma reverse physics

- Most of the time the reverse/forward gamma will no interact with the geometry
- Force interactions along the track of the reverse gamma to go back to a primary electron on the othe side of the shielding
- Give more weights for interaction in external layers
- Only valid for gamma induced by primary elecetrons

Testing of Reverse MC (1)

- New small scale ESA project to test ReverseMC
- First results positive with shielding, but some issues identified
 - → further investigation required

Spherical Shielding Tests

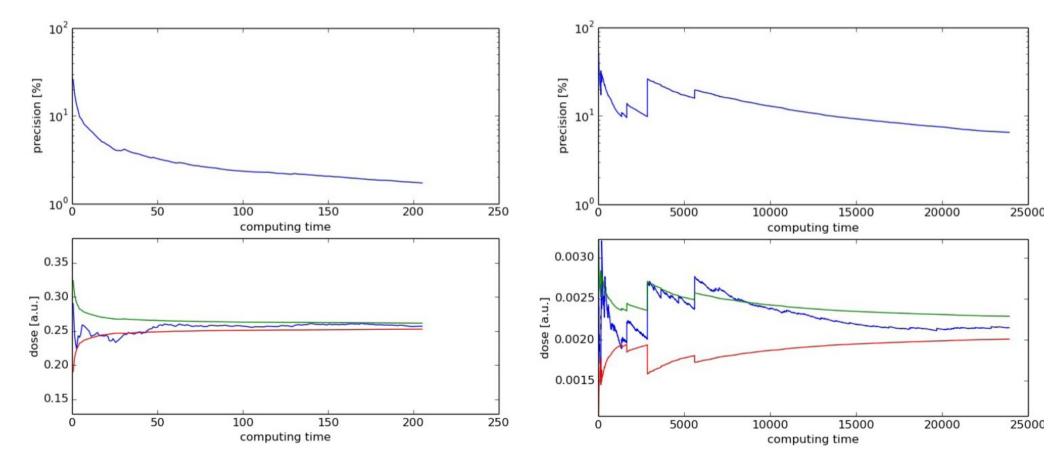

Version of GRAS/Geant4 tested

- GRAS:Trunk HEAD
- G4: geant4-10-02-ref-07

Running the spherical shell tests with both FMC and RMC:

- JUICE e- spectrum
- 0.1 50 mm Al and Ta spherical shell of 10 cm inner radius
- Evaluated quantities:
 - in 10 micro thick Si placed immediately inside the shell
 - Electron and gamma spectra after the shell
 - Convergence of the calculated Dose, in the case of RMC

5 mm Al Shielding



Testing of Reverse MC (2)

- Thicker shielding shows some "high weight" jumps
- Some other systematic differences more work needed

5 mm Al shielding

50 mm Al, JUICE Spectrum

New Developments in Generic Biasing (1)

- Not much progress since last collaboration workshop
- But...

Reminder About Existing Functionalities

- > Design of generic biasing relies on:
 - two main abstract classes:
 - > G4VBiasingOperation:
 - Biasing of physics processes
 - > Change of process interaction law
 - > Change of final state generation
 - Splitting/killing
 - > G4VBiasingOperator:
 - Which takes decisions on what biasing operation to apply
 - $-\,\,$ At the beginning of the step, and at the post step
 - One concrete class : G4BiasingProcessInterface
 - > Makes the connection between the biasing and the tracking
 - > Gets instructions from the biasing operator about operations to apply
- > Concrete implementations:
 - Biasing operation to change a process cross-section
 - Forced collision scheme à la MCNP
 - Both functionalities validated with neutral particles
- > Set of examples example/extended/biasing/GBXX
 - GB01 : change of XS
- GB03 : geom. importance based biasing
- GB02: force collision
- GB04 : bremsstralhung splitting

First released in 10.0 then consolidation in 10.1 and 10.2. In particular in 10.2: use of track auxiliary information (forced collision scheme) & easy access to phys. process XS to operator.

Status as of Today

- > Not much happened this year
- > Several items are planned
 - Not all will be delivered this year
 - ⇒Take opportunity to discuss needs/priorities
- > Prioritized list for now (not all for this year !):
 - Statistical tests / statistical test suite
 - Refactor existing generic biasing bremsstrahlung splitting example to source
 - Implicit capture
 - Biasing of charged particles
 - Allow use of parallel worlds
 - Use of occurrence biasing to allow continuous density changinside a same volume
 - DXTRAN-like biasing
 - Material/isotope biasing
 - Woodcock tracking

New Developments in Generic Biasing (2)

- Statistical testing of biasing is important
- Need to verify if different biasing schemes are always correct
- Other extensions are cross-category no global cross-section

Statistical Test Suite

- > This is the priority
 - as needed to validate any biasing developments
- Goal: perform a statistical validation of the biased simulation against the analog one
 - Hence, need to run heavy analog statistics
 - > Clusters ? Grid ?
- Simple in principle:
 - Record "same" histograms and some observables
 - With quantities entered with proper weights
 - And make statistical tests
- > In practice:
 - Might be a same test that is run with:
 - > A light statistics mode, for testing purposes
 - > A heavy statistics mode, for statistical validation
 - and a script/macro to perform the comparisons
 - Can/must be done with already existing options

Dependencies on Other Physics Packages

- Dependencies between biasing and other physics packages must be introduced
 - Because of absence of generic interfaces for XS and differential XS
 - XS: interaction law biasing
 - > G4VProcess provides the interaction length in a generic way
 - > But getting the cross-section at the end of the step to apply the "integral approach" will likely involve explicit dependencies on physics packages
 - Differential XS: final state biasing:
 - Splitting/killing of primary/secondaries could be made using G4VProcess interface only
 - But any change of final state distribution will likely require dependencies on physics packages to access related laws
- > Could consider:
 - Biasing depending on other physics packages
 - > And all concrete biasing classes reside under biasing
 - ** Or (exclusive) **
 - Physics packages depend on biasing
 - > To access the biasing interfaces
 - > Having the concrete biasing classes residing in physics packages
- Must be discussed.