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Extending GeantV to
accelerators

S.Vallecorsa for the GeantV team

Auto-vectorization:
recent progress

Guilherme Amadio, Sofia Vallecorsa

Geant4 collaboration meeting - September 2016



VecGeom on accelerators

Speedup for different navigation methods for the BOX (normalized to scalar)
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KNL systems use 512 bit registers
corresponding to 16 SIMD lanes in DP (and
32 in SP)

Observe super-linear speedup for some
methods
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Beyond Geometry

8 Speed-up on Xeon Phi{R) COPRQ-7120
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Auto-vectorization

VecGeom Benchmarks on Intel® Xeon Phi™ (KNL)

e Everything was compiled
1 1 Box Benchmark — Intel® Xeon Phi™ CPU 7210 1.30GHz (Knights Landing)
with Intel C/C++ compiler )

16.0.3

o Used “-03-xMIC-AVX512”

e Contrary to AVX2
benchmarks on Skylake,
UME::SIMD gives best
performance on Knights
Landing

e | Scalar code under Vector AP

Runtime (ms)

shows auto-vectorization in
many cases




Summary

e Auto-vectorization is a powerful tool and compilers are getting better at it.

o  PRO: Almost “free lunch” provided the code is free of “vectorization hazards”

o  CONS: There are still differences among compilers, operations, architectures.

e However explicit vectorization using specific libraries still gives significantly the

best result (ex. Vc for AVX2 and UME::SIMD for AVX512)
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Scheduling fine grain
workloads in GeantV

A.Gheata
Geant4 215t Collaboration Meeting

Ferrara, Italy
12-16 September 2016



Scheduling fine grain workloads in GeantV

Framework: GeantV moving to a task

approach

* Migration to TBB tasks for better integration
with concurrent experimental frameworks

 Partially implemented, more tasks to be
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GeantV concurrency restructurmg
run manager
A GeantV ()
propagator propagator

* Work for better scalability
on many-core (single H

Scheduler

process/multi cluster)
. Introducing NUMA node Basketizer |l Basketizer
awareness Multi propagator mode (preliminary)
* Investigating concurrency e e

optimizations i

oportunities in HPC

environments ) —
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Vector Electromagnetic Physics
Models & Field Propagation

Guilherme Amadio (UNESP),
Ananya,
John Apostolakis, Marilena Bandieramonte, Mihaly Novak (CERN)
Soon Yung Jun (Fermilab)

21 Geant4 Collaboration Meeting

Magnetic Field Propagation

Ananya
John Apostolakis
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Preliminary Performance: Alias Sampling Method

* Vector performance
— input particle energy: 2-20 MeV (valid range for all models)
— using 16 elements (random for each track)

— MIC (Intel Xeon Phi 5110P 60 cores @ 1.053 GHz) - 8 vector
pipelines for double precision — see also SSE/AVX in backup
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Field Propagation - Outlook

» Vectorized field propagation is in progress
— Field & equation of motion vectorised
— Helix and different RK steppers vectorised

— ‘Driver’: different methods for keeping vectorisation when

handling multiple tracks are under investigation
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Neutron HPC

Makoto Asai, Andrea Dotti (adotti@slac.stanford.edu), Tatsumi
SLAC/SD/EPP/Computing
—Geant4 2+ -Cottaborati®n Meeting — Ferrara, 12-16 September 2016
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FY2017 Proposal from SLAC team to DOE

o1 A

o b N

SLAC team has proposed a ~0.5FTE work-plan for FY17+ (funding pending):
- to capitalize on the very successful experience of MPEXS
- to leverage expertise of Stanford NVIDIA Center of Excellence (ICME)
- to leverage SLAC specific expertise on neutron interactions, especially at lower energies

Develop a stand-alone, GPU friendly, neutron specific physics simulation library:
- outside of any specific “toolkit”, but with integration into Geant4 and GeantV in mind
- specialized code to deal with (low Energy) neutron interactions

Why (low-E) neutrons?
- for their nature they perform several very similar interactions: physics variety is relatively simple
- can reasonably limit variety of secondary species (pre-requisite for efficient GPU-style code)
- great local expertise that make the problem a success and a laboratory for possible future extensions



Preliminary Overview
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