Hadronic Validation Highlights

Dennis Wright
Geant4 Collaboration Meeting
13 September 2016

Outline

- Trends in thin target validation Validation (FTF, QGS, BERT)
 - high energy models
 - cascade models
- The need for thick target validation
 - SATIF neutron data
 - TARC
- Validation Suite
 - survey of frequency
 - DoSSiER
 - suggestions for future

Validation Team

- Thanks to the people doing the work
 - Julia Yarba
 - Hans Wenzel
 - Vladimir Uzhinsky
 - Alberto Ribon
 - Tatsumi Koi
 - Vladimir Ivantchenko
 - Anton Ivantchenko
 - Vladimir Grichine
 - Krzysztof Genser
 - Andrea Dotti
 - Sunanda Banerjee

Trends: FTF and QGS

- FTF comparison to data stable since 10.1
 - improved since 9.6
 - not much improvement since 10.1
 - some worsening of agreement during tuning then return to stable results → has all that can be done been done?
- Work on QGS has shown up in validation
 - worsening agreement with data (result of tuning?)
 - still too early to say where this is going, but must be watched
- In both cases (FTF and QGS):
 - too much reliance on p+p and p+C data

Test19 Validation Results (FTFP, 31 GeV)

Test19 Validation Results (QGSP, 31 GeV)

Trends: Cascade Models

- Bertini, Binary, INCL++
 - all stable for several releases
- Highlighted problems
 - consistent overproduction by Bertini of low energy neutron flux
 - Bertini also under-produces d, t, 3He, alpha
 - gamma-nuclear validation based on too few data sets (3 below 700 MeV, 1 at 5 GeV)
- FTF in cascade range (few GeV)
 - consistent overproduction of neutrons at medium energies
 - favorable or superior comparisons with Bertini at 8 GeV

Test30 Validation Results (V. Ivantchenko) BERT, BERP, BIC, FTFP, INCL

BERT vs. FTF at 8 GeV on Ta (through 10.2 ref07)

BERT vs. FTF at 8 GeV: General Conclusions

- Differences in FTF are modest between 10.2 p02 and 10.2 ref07
 - but non-negligible for pion-induced reactions
- At large angles (in HARP Ta data) FTF better than BERT
 - BERT better than FTF at backward angles
 - FTF better almost everywhere else
 - same is true for lighter elements
- Preference not so clear for p/n production
 - FTF and BERT comparable for medium to light nuclei
 - FTF especially good for Cu
 - BERT better for Pb, U

Thick Target Validation

- The bulk of our non-calorimeter validation relies on thintarget tests
 - closest to single interaction situation
 - fewer experiment- and target-related issues
- However, this biases our decisions on:
 - model tuning
 - model choice in physics lists
- Add more thick target validation
 - may provide sensitivity to small angle scattering that thin target data cannot
 - also to validity of cross sections

Neutron Validation Results (FTFP)

TARC: 2.5 GeV/c p + Pb \rightarrow n fluence (Binary 2015)

TARC: 2.5 GeV/c p + Pb \rightarrow n fluence (Binary 2008)

Hadronic Validation Test Survey

- Currently in the validation database
 - data from 22 separate experiments
 - 13 hadronic-related test categories
 - 415 data sets
 - 10642 simulation test results
 - more tests and experiment data to come
 - goal: updates with every release
- It's a big job
 - developer/tester must generate and submit plots
 - evaluation, too
- How are we doing?

Survey of Validation Frequency

Test name	Description	Last update	Last update added to repository
test19	high E models	10.2 p02	10.2 p02
test22	FTF model	9.6 ?	9.6 ref04
test23	physics lists	10.3 beta	10.3 beta
test30	HARP data	10.3 beta	9.6 ref00
test35	HARP and PS214	10.2	9.6 ref00
test45	thick targets	9.4 ?	9.4 ref00
test47	intermediate E	10.2 p02	10.2 p02
test48	stopping	10.2 p02	10.2 p02
test75	gamma-nuclear	10.2 p02	10.2 p02
Hadrlon	ions, thick tgts	9.4 ?	9.4 ref00
IAEA	spallation	9.6 ?	9.6 ref00
Testfragm	ions, thin tgts	9.6 ?	9.6 ref00
simplifiedCalo	shower shapes	10.3 beta	9.6 p02

Results of Survey

- 5 tests done and updated regularly
- 3 tests done regularly, but results not added to DB
 - •reasons cited: performing comparison tests, making plots is a lot of work, uploading images of test results is not easy
- 5 tests not done or updated for some time
 - •in most of these cases developer of test no longer in Geant4
- How can this be made easier?
 - see proposals below

Proposed Improvements

- One of the current problems is with uploading images
 - validator must
 - run test
 - make comparison plot
 - upload image of plot
 - repeat N times per release
- Try instead to access data directly in DB and let software run tests, make plots
 - work on this is underway
 - see parallel session 5A on DoSSiER

Proposed Improvements

- Another possibility
 - Application being developed to run single interactions (first prototype discussed at FNAL meeting last year)
 - Same thing used by developers to test models
 - But instead using a universal application (e.g. process independent) that uses the process as configured in physics list
 - Output: (total) cross-section; properties of secondaries (spectra, angular distributions, multiplicities...). Comparison with data (currently Bertini validation suite; Omega Exp pi0 production, HARP pi production)
 - Validation macros/plots ready for: Hadronic Inelastic and Elastic, n-Capture, Gamma-nuclear
 - Expect to be in production (DoSSiER interface) by 10.3

Output Examples

n-Capture on G4_Pb
As simulated in FTFP_BERT

Recommendations

- High energy models
 - with changes continuing in both FTF and QGS, need to expand validation basis at high energy end
 - add existing data at 100 GeV
 - we currently judge performance mainly on p+p and p+C data
 - use data sets with other projectiles, targets
- More thick target tests
 - we have some of these but not a lot → our decisions more heavily influenced by thin target comparisons
 - add SATIF neutron data to regular tests
- Global comparison is important for valid conclusions

Future Development

- More thick target tests
 - SATIF, neutrons, others
- Gamma-nuclear
 - lots of data to add:
 - 1, 2, 3, 4.5 GeV for C, Al, Cu, Pb
 - currently only 0.3, 0.668, 0.68 and 5 GeV
 - becoming important for "heavy photon" searches
- Radioactive decay
 - several tests each for α , β -, β +, EC and IT
 - currently none
 - important for medical, space