

Use of C++11 in Geant4

I. Hrivnacova, IPN Orsay

21st Geant4 Collaboration Meeting,
14 September 2016, Ferrara

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 2

Outline
● C++11 in Geant4
● Usage of C++11 features
● Geant4 developers experience
● C++14 hightlights

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 3

C++11 As A Revolution

● Lambda expressions - lets you define functions locally, at the place of the
call

● Automatic type deduction - you can declare objects without specifying their
types

● Rvalue references - can bind to “rvalues”, e.g. temporary objects and literals.
● Smart pointers – no delete
● C++ Standard library - new container classes, new algorithm library and

several new libraries for regular expressions, tuples, …
● Threading library – thread class

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 4

C++11 in Geant4

● Geant4 10.1 - December, 2014
● Possibility to select compilation using the C++11 Standard at configuration time

for capable compilers.
● Geant4 C++11 task force - since February 2015

● Identify platforms/compilers which can provide valid support for C++11 features
and clarify the level of support

● Define what will be the set of supported systems/compilers for the next Geant4
release, and which should be definitely dropped

● Identify a minimal set of C++11 features we want to exploit in the current code
● Geant4 10.2 - December, 2015

● Compilation using the C++11 Standard is enabled by default, therefore requiring
compilers supporting C++ (the list of required features is available in Release
Notes)

● Dropped “old” platforms.

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 5

C++11 Guidelines Document
● http://geant4.web.cern.ch/geant4/collaboration/c++11_guide.shtml

(link)
● Compiled from the following sources:

● Effective Modern C++ by Scot Meyers (O'Reilly). Copyright 2015 Scot Meyers.
978-1-491-90399-9.

● ALICE O² C++ Style Guide.
● cplusplus.com
● Stack Overflow
● It is using style sheets of C++ Google Style guide, Revision 3.274 (link) under

the CC-By 3.0 License further modified by ALICE O² project

● Presented in Geant4 Collaboration Meeting in Fermilab

http://geant4.web.cern.ch/geant4/collaboration/c++11_guide.shtml
http://geant4.web.cern.ch/geant4/collaboration/c++11_guide.shtml

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 6

C++11 Mini-Tutorial

● Presented in Geant4 Collaboration Meeting in Fermilab
● Parallel session 6B “C++11 Migration”

● The guidelines introduced in the C++11 Guidelines Document with more
explanations and examples

● Linked from C++11 Guidelines Document

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 7

Mini Survey

● A questionnaire sent to 11 Geant4 developers (including myself)
● First to developers who mentionned applying C++11 features in their History

file(s)
● Then to other developers whose names were suggested by the developers

asked first
● 8 developers replied:

● Gabriele Cosmo, Andrea Dotti, Vladimir Ivantchenko, Daren Sawkey, Luciano
Pandola, John Alisson, Enrico Bagli, me

● Thanks to all of them for providing this feedback

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 8

Mini Survey (2)

● Did you use the Geant4 C++11 Coding Guidelines document & tutorial?
● All, except one, replied YES

● Did you study C++11 features also from other sources (books, Web sites)
● All, except one, replied YES
● Books, cppreference website (2x) and stackoverlow
● Stroustrup's C++11 FAQ was very helpful (2x)

● In which code did you use C++11:
● Both in newly developed and existing code (4)
● Only in newly developed code (3),
● Only in the existing code (1)

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 9

Mini Survey (3)

● Which features you use in your code

● I used <chrono> and

<thread> to establish
the vis thread.

● Also, I used <chrono>
for picking in OpenGL.
 Previously Geant4
just waited for user
interaction, consuming
100% CPU. Now it
sleeps for 100 ms, not
noticeable to the user.

● The CPU usage drops
to 1%.

auto

braced initialization

range-based for loop

nullptr

alias declarations

constexpr

scoped enums

deleted functions

overriding functions

explicit constructors

delegating and/or inheriting constructors

std::unique_ptr

std::shared_ptr

std::weak_ptr

Lambda expressions

unordered containers

0 1 2 3 4 5 6 7 8 9

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 10

Mini Survey (4)

● Did you get any difficulties with applying some of the guidelines?
● constexpr

● Could be used only since VC13 on Windows was dropped
● Strongly not recommend in Standard EM – due to known cases in CMS when

constexpr kill performance
● Depends on the context of use, not clear whether “constexpr” was compared to

“const” or “static const”
– Statics get executed only once in your job; const are executed every time the method

including them is called…

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 11

Personal Comments (1)

● A campain to introduce some (simplest) C++11 features inside EM standard
libraries

● nullptr, delete, override, explicit - everywere where applicable
● final - more delicate we changed our mind from "everywhere" to "in few well

defined cases"
● auto, range base of a loop - only in few cases, may be in the new code
● constexpr - not applicable to physics classes because majority of our

constrants are expressions, we still prefer to use "static const G4double" and
strongly not recommend constexpr

● std::unique_ptr - reqire more code modifications but we would like to
consider

● std::shared_ptr, std::weak_ptr, Lambda expressions, unordered
containers - seems not applicable or even dangerous

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 12

Personal Comments (2)

● I may say that this helps us to make code more uniform, improve comments,
remove few obsolete methods but do not bring any practical benifits like
improved CPU performance or reduced library size.

● There is a strong requirement that there be no speed degradation in the
electromagnetics code so that constrained what C++11 features I could use.
These had to be determined experimentally.

● Still, I believe we’re only scratching the surface of what C++11 provides,
given we’re not making use of advanced template programming constructs
in Geant4, nor we have areas where the design has migrated to make use of
such techniques yet.

● I like C++11 for its new features.

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 13

C++14 Highlights

● C++14 is a minor release, featuring mainly bug fixes and small
improvements, December 15, 2014

● Some of new features:
● Function return type deduction
● Relaxed constexpr restrictions
● Generic lambdas
● Variable templates
● Digit separators in numeric literals
● The attribute [[deprecated]]
● std::make_unique can be used like std::make_shared
● Heterogeneous lookup in standard library associative containers
● ...

21st Geant4 Collaboration Meeting, 14 September 2016, Ferrara 14

C++14 Highlights (2)

● Compiler support:
● Clang finished support for C++14 in 3.4 though under the standard name

c++1y
● GCC finished support for C++14 in GCC 5, and made C++14 the default

C++ standard in GCC 6
● Microsoft Visual Studio 2015 has support for some but not all C++14

features

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

