Recent Updates in USOLIDS/VecGeom (focus on ALICE requirements)

Sandro Wenzel / CERN-ALICE

for the VecGeom dev-team

Geant4 collaboration meeting, Ferrara, 15.09.2015

Reminder of Motivation

Incl.	Self	Called	Function	Location
9.63	0.54	83 953 762	TGeoShapeAssembly::Safety(doubl	libGeom.so.5.34.30: TGeoShapeAss
6.24	0.14	54 409 322	TGeoShapeAssembly::DistFromOut	libGeom.so.5.34.30: TGeoShapeAss
4.05	0.15	56 657 325	TGeoShapeAssembly::DistFromOut	libGeom.so.5.34.30: TGeoShapeAss
2.42	0.23	858 580 402	TGeoVoxelFinder::GetNextVoxel(do	libGeom.so.5.34.30: TGeoVoxelFind
2.20	1.75	740 115 706	TGeoVoxelFinder::GetNextCandidat	libGeom.so.5.34.30: TGeoVoxelFind
1.81	0.28	704 753 410	TGeoXtru::Contains(double const*)	libGeom.so.5.34.30: TGeoXtru.cxx,
1.70	0.07	81 244 037	TGeoShapeAssembly::Contains(do	libGeom.so.5.34.30: TGeoShapeAss
1.29	0.05	73 509 785	TGeoSubtraction::Safety(double co	libGeom.so.5.34.30: TGeoBoolNode
1.24	0.45	309 067 908	TGeoVoxelFinder::GetCheckList(do	libGeom.so.5.34.30: TGeoVoxelFind
1.07	0.04		TGeoShapeAssembly::Contains(do	libGeom.so.5.34.30: TGeoShapeAss
0.84	0.05	75 659 866	TGeoSubtraction::Safety(double co	libGeom.so.5.34.30: TGeoBoolNode
0.81	0.06	136 620 576	TGeoShape::SafetyPhi(double cons	libGeom.so.5.34.30: TGeoShape.cx
0.81	0.76	2 332 685 480	TGeoTranslation::MasterToLocal(do	libGeom.so.5.34.30: TGeoMatrix.cxx
0.79	0.77	199 772 850	TGeoShapeAssembly::Safety(doubl	libGeom.so.5.34.30: TGeoShapeAss
0.79	0.25	118 464 696	TGeoVoxelFinder::SortCrossedVox	libGeom.so.5.34.30: TGeoVoxelFind
0.76	0.19	1 439 414 508	TGeoXtru::GetThreadData() const	libGeom.so.5.34.30: TGeoXtru.cxx
0.71	0.18	194 586 867	TGeoXtru::DistToPlane(double cons	libGeom.so.5.34.30: TGeoXtru.cxx,
0.68	0.04	14 337 390	TGeoXtru::DistFromOutside(double	libGeom.so.5.34.30: TGeoXtru.cxx,
0.56	0.06		TGeoXtru::Safety(double const*, bo	libGeom.so.5.34.30: TGeoXtru.cxx,
0.54	0.34		TGeoXtru::GetPlaneVertices(int, int,	libGeom.so.5.34.30: TGeoXtru.cxx,
0.45	0.08		TGeoXtru::SafetyToSector(double c	libGeom.so.5.34.30: TGeoXtru.cxx,
0.44	0.06		TGeoXtru::SetCurrentZ(double, int)	libGeom.so.5.34.30: TGeoXtru.cxx
0.43	0.06		TGeoTubeSeg::Safety(double const	libGeom.so.5.34.30: TGeoTube.cxx,
0.40	0.33	125 157 334	TGeoXtru::SetCurrentVertices(doubl	libGeom.so.5.34.30: TGeoXtru.cxx
<u> </u>	<u> </u>	171 001 001		

* Lots of CPU cycles spent in geometry/solid functions

- at least true for most "intensity frontier" experiments/simulations
- here shown for ALICE (using TGeo) in a realistic Pb-Pb collision simulation but equally true for other experiments using Geant4 geometry

Reminder of Motivation

Incl.	Self	Called	Function	Location
9.63	0.54	83 953 762	TGeoShapeAssembly::Safety(doubl	libGeom.so.5.34.30: TGeoShapeAss
6.24	0.14	54 409 322	TGeoShapeAssembly::DistFromOut	libGeom.so.5.34.30: TGeoShapeAss
4.05	0.15	56 657 325	TGeoShapeAssembly::DistFromOut	libGeom.so.5.34.30: TGeoShapeAss
2.42	0.23	858 580 402	TGeoVoxelFinder::GetNextVoxel(do	libGeom.so.5.34.30: TGeoVoxelFind
2.20	1.75	740 115 706	TGeoVoxelFinder::GetNextCandidat	libGeom.so.5.34.30: TGeoVoxelFind
1.81	0.28	704 753 410	TGeoXtru::Contains(double const*)	libGeom.so.5.34.30: TGeoXtru.cxx,
1.70	0.07		TGeoShapeAssembly::Contains(do	libGeom.so.5.34.30: TGeoShapeAss
1.29	0.05		TGeoSubtraction::Safety(double co	libGeom.so.5.34.30: TGeoBoolNode
1.24	0.45		TGeoVoxelFinder::GetCheckList(do	libGeom.so.5.34.30: TGeoVoxelFind
1.07	0.04		TGeoShapeAssembly::Contains(do	libGeom.so.5.34.30: TGeoShapeAss
0.84	0.05		TGeoSubtraction::Safety(double co	libGeom.so.5.34.30: TGeoBoolNode
0.81	0.06		TGeoShape::SafetyPhi(double cons	libGeom.so.5.34.30: TGeoShape.cx
0.81	0.76	2 332 685 480	TGeoTranslation::MasterToLocal(do	libGeom.so.5.34.30: TGeoMatrix.cxx
0.79	0.77	199 772 850	TGeoShapeAssembly::Safety(doubl	libGeom.so.5.34.30: TGeoShapeAss
0.79	0.25	118 464 696	TGeoVoxelFinder::SortCrossedVox	libGeom.so.5.34.30: TGeoVoxelFind
0.76	0.19	1 439 414 508	TGeoXtru::GetThreadData() const	libGeom.so.5.34.30: TGeoXtru.cxx
0.71	0.18	194 586 867	TGeoXtru::DistToPlane(double cons	libGeom.so.5.34.30: TGeoXtru.cxx,
0.68	0.04	14 337 390	TGeoXtru::DistFromOutside(double	libGeom.so.5.34.30: TGeoXtru.cxx,
0.56	0.06		TGeoXtru::Safety(double const*, bo	libGeom.so.5.34.30: TGeoXtru.cxx,
0.54	0.34	374 978 915	TGeoXtru::GetPlaneVertices(int, int,	libGeom.so.5.34.30: TGeoXtru.cxx,
0.45	0.08		TGeoXtru::SafetyToSector(double c	libGeom.so.5.34.30: TGeoXtru.cxx,
0.44	0.06	116 547 273	TGeoXtru::SetCurrentZ(double, int)	libGeom.so.5.34.30: TGeoXtru.cxx
0.43	0.06	76 043 241	TGeoTubeSeg::Safety(double const	libGeom.so.5.34.30: TGeoTube.cxx,
0.40	0.33	125 157 334	TGeoXtru::SetCurrentVertices(doubl	libGeom.so.5.34.30: TGeoXtru.cxx
0.00	0.05	171 001 001		

* Lots of CPU cycles spent in geometry/solid functions

- at least true for most "intensity frontier" experiments/simulations
- here shown for ALICE (using TGeo) in a realistic Pb-Pb collision simulation but equally true for other experiments using Geant4 geometry
- Unified Solids (USOLIDS) project was launched ~2010 to "improve speed/ algorithms/code/maintenance burden" of geometry code for the benefit of Geant4/TGeo...

Reminder VecGeom project

VecGeom = Unified Solids Project

+ Many-Particle API

+ Geometry Model / Navigation

Vec
=SIMD/GPU supportGeomcomplete geometry modeler

hosted at gitlab.cern.ch/VecGeom">gitlab.cern.ch/VecGeom/VecGe

Short outline

- Comprehensive overview of USOLIDS/VecGeom presented during the last meeting(s)
- **Focus today** on two important requirements for ALICE
- * see Gabriele's talks on USOLIDS/G4 integration

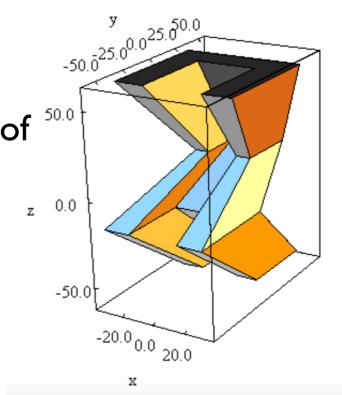
Requirements from ALICE

- USOLIDS currently offers implementation to satisfy requirements of CMS, LHCB and others; (see Gabriele's talk for status report on integration)
- * ALICE expressed interest; take a look at most important CPU consumers:

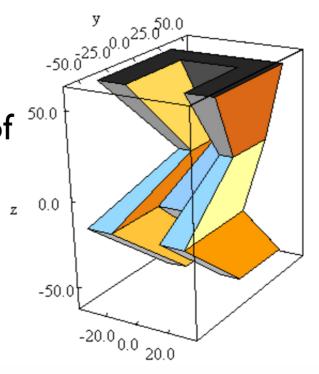
Solid	Safety	DistToIn	DistToOut	Contains	Sum	
Pgon	2.05	2.52	0.18	1.18	5.93	available in optimized form in USOLIDS
Xtru	0.60	0.68	0.20	1.81	3.29	
Pcon	1.07	0.32	0.05	0.13	1.57	available in optimized form in USOLIDS
Assembly*	10.5*	6.24*	6*	2.7*	23.49*	
numbers represent total percentage cost of simulation runtime *not elementary solid / inclusive cos						

Requirements from ALICE

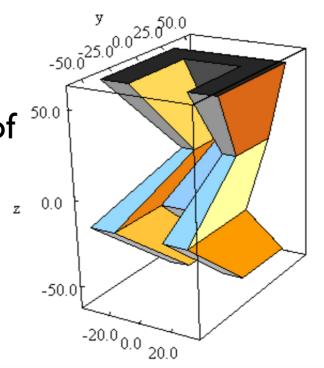
- USOLIDS currently offers implementation to satisfy requirements of CMS, LHCB and others; (see Gabriele's talk for status report on integration)
- * ALICE expressed interest; take a look at most important CPU consumers:


Solid	Safety	DistToIn	DistToOut	Contains	Sum	
Pgon	2.05	2.52	0.18	1.18	5.93	available in optimized form in USOLIDS
Xtru	0.60	0.68	0.20	1.81	3.29	 no dedicated implementation
Pcon	1.07	0.32	0.05	0.13	1.57	available in optimized form in USOLIDS
Assembly'	* 10.5*	6.24*	6*	2.7*	23.49*	
numbers represent total percentage cost of simulation runtime *not elementary solid / inclusive cost						

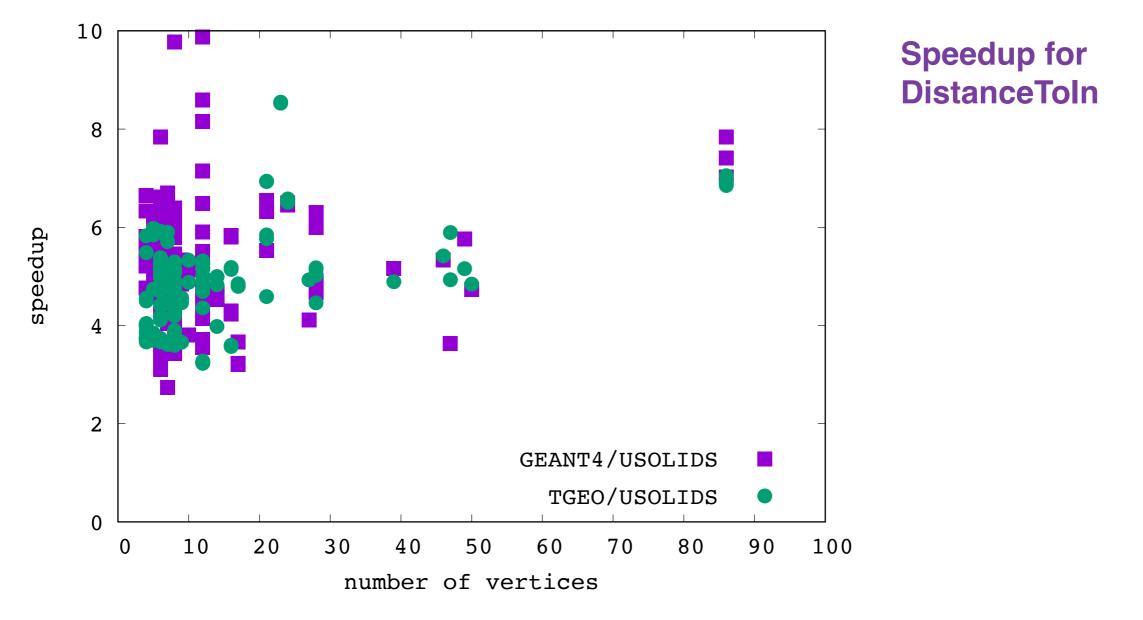
Requirements from ALICE


- USOLIDS currently offers implementation to satisfy requirements of CMS, LHCB and others; (see Gabriele's talk for status report on integration)
- * ALICE expressed interest; take a look at most important CPU consumers:

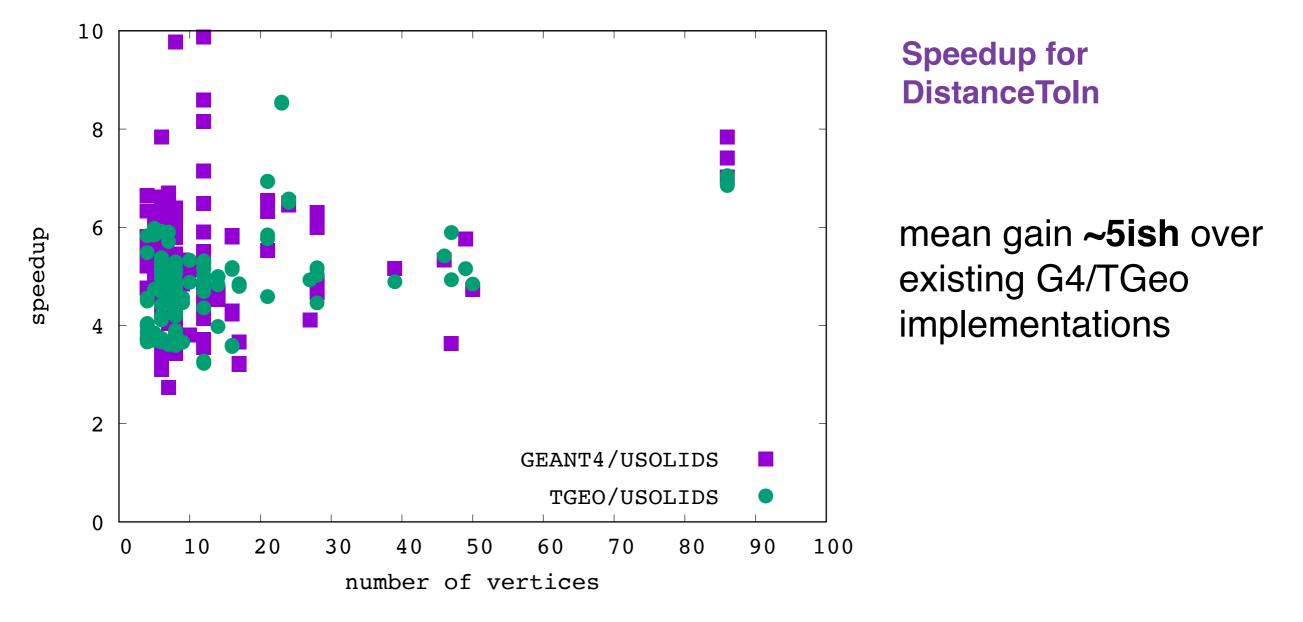
Solid	Safety	DistToIn	DistToOut	Contains	Sum	
Pgon	2.05	2.52	0.18	1.18	5.93	available in optimized form in USOLIDS
Xtru	0.60	0.68	0.20	1.81	3.29	 no dedicated implementation
Pcon	1.07	0.32	0.05	0.13	1.57	available in optimized form in USOLIDS
Assembly*	10.5*	6.24*	6*	2.7*	23.49*	 important navigation feature; not implemented
numbers represent total pe						


- Extruded solid is a 2D concave/convex polygonal template extruded along z direction (under application of scale/shifts)
- * quite a complex solid

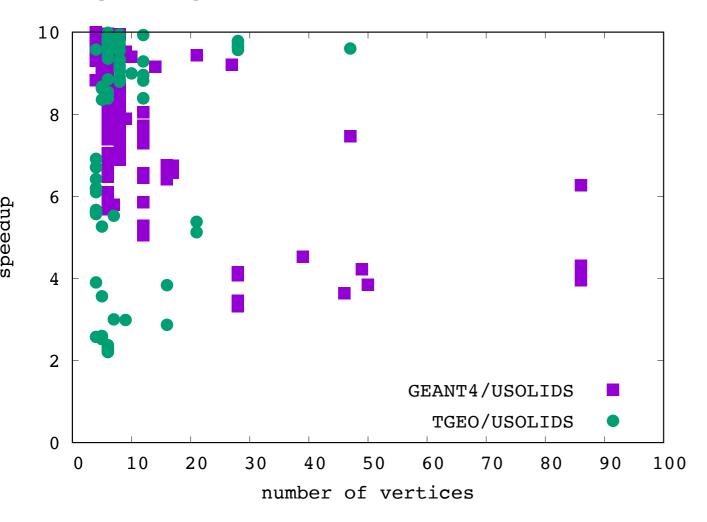
- Extruded solid is a 2D concave/convex polygonal template extruded along z direction (under application of scale/shifts)
- * quite a complex solid
- * analysis of ALICE detector showed:
 - ~190 different extruded solids used (from 4 to ~100 vertices)
 - **all** of them consist just of 2 z-planes
 - **none** of them uses scale/transform



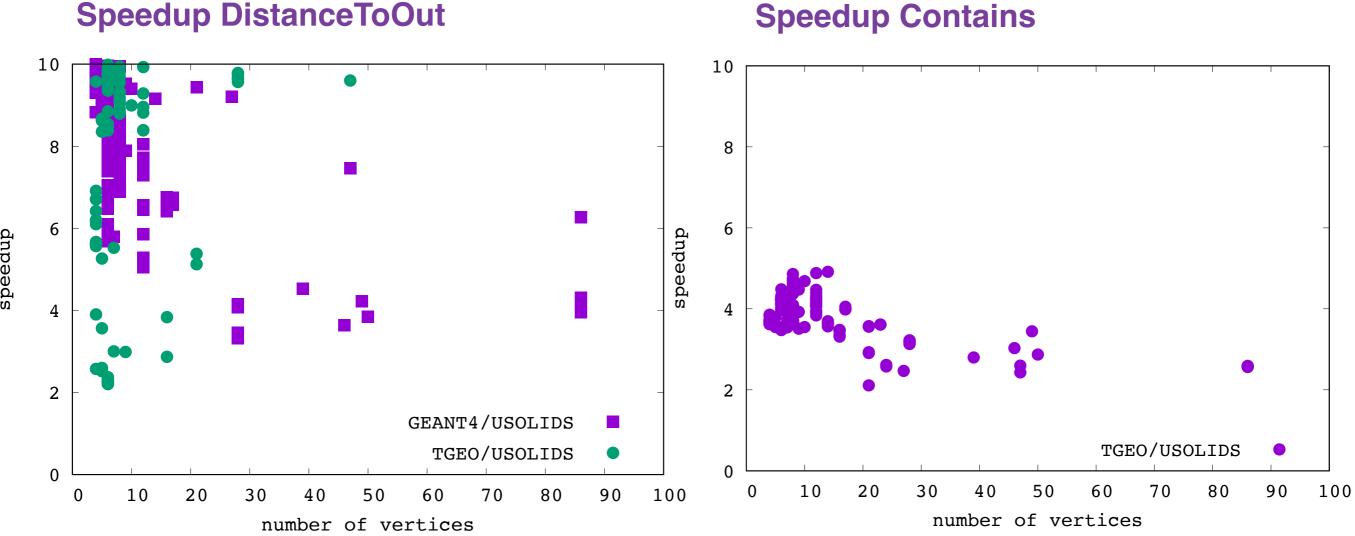
- Extruded solid is a 2D concave/convex polygonal template extruded along z direction (under application of scale/shifts)
- * quite a complex solid
- * analysis of ALICE detector showed:
 - ~190 different extruded solids used (from 4 to ~100 vertices)
 - **all** of them consist just of 2 z-planes
 - **none** of them uses scale/transform
- * Appropriate to provide specialized solid for this use-case
 - **The "simple extruded solid" (SExtru)**??
 - " "Polygonal prism" might be more appropriate name ...



- An implementation of SExtru is now available in the master branch of VecGeom
 - implementation using modern C++; multi-particle interface; GPU ready


- An implementation of SExtru is now available in the master branch of VecGeom
 - implementation using modern C++; multi-particle interface; GPU ready
- **First performance evaluations taking into account all ALICE realizations**

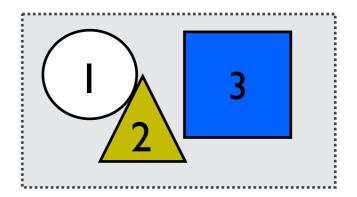
- An implementation of SExtru is now available in the master branch of VecGeom
 - implementation using modern C++; multi-particle interface; GPU ready
- **First performance evaluations taking into account all ALICE realizations**


SExtru Performance (2)

Speedup DistanceToOut

mean gain >**5ish** over existing G4/TGeo implementations

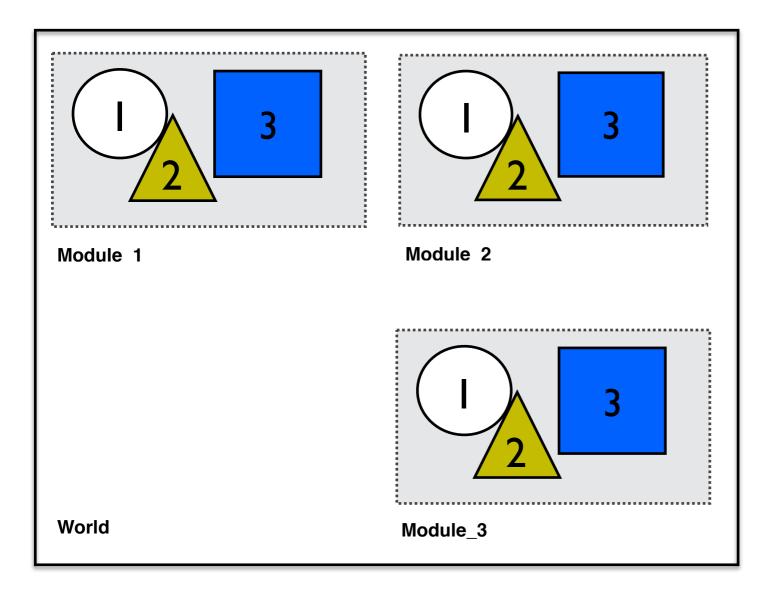
SExtru Performance (2)

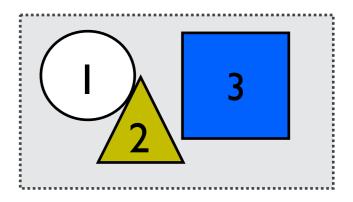

Speedup Contains

mean gain >5ish over existing G4/TGeo implementations

2 to 5x faster than existing G4/ **TGeo** implementations

* The assembly is a logical group of solids

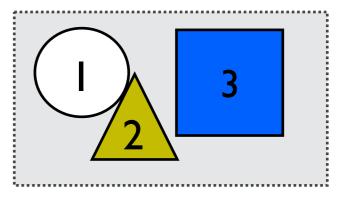

- used to create repetitions of complex structures
- but no physical boundary itself
- no material etc.

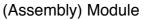


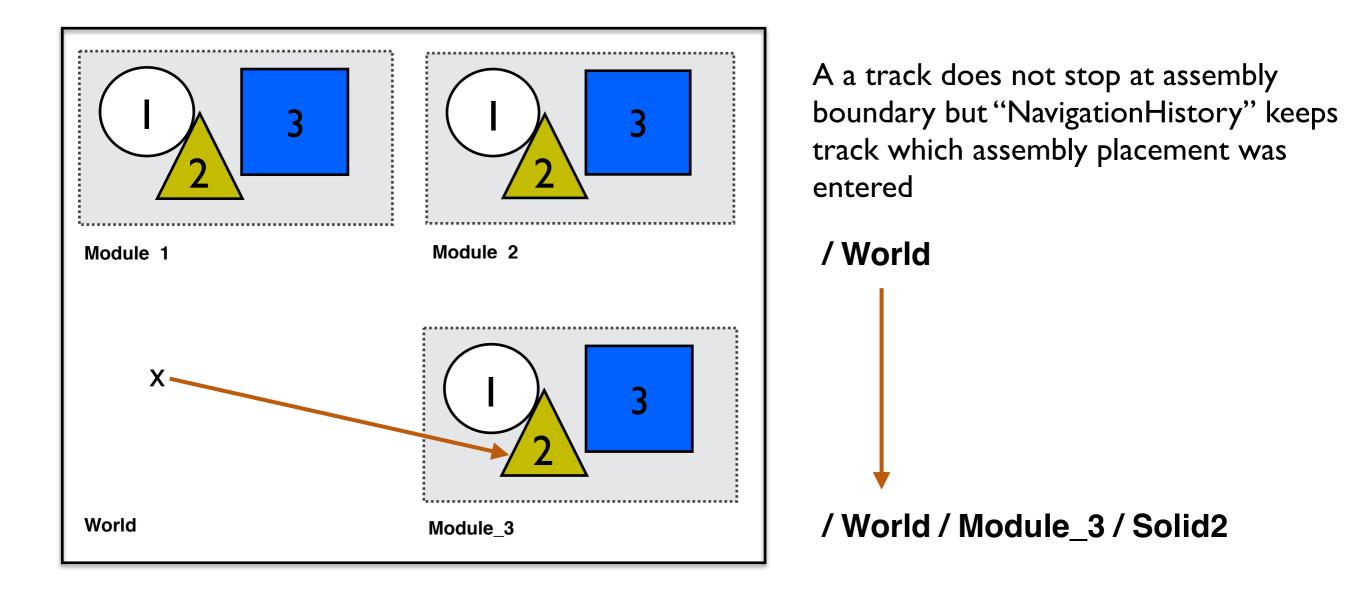
(Assembly) Module

* The assembly is a logical group of solids

- used to create repetitions of complex structures
- but no physical boundary itself
- no material etc.

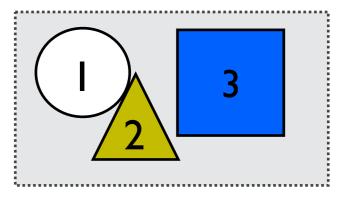


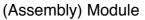



(Assembly) Module

* The assembly is a logical group of solids

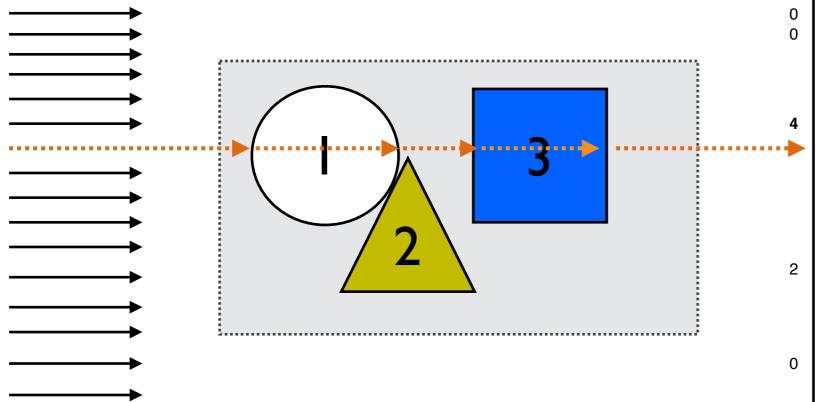
- used to create repetitions of complex structures
- but no physical boundary itself
- no material etc.

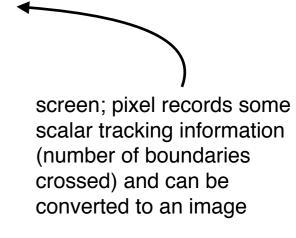




* The assembly is a logical group of solids

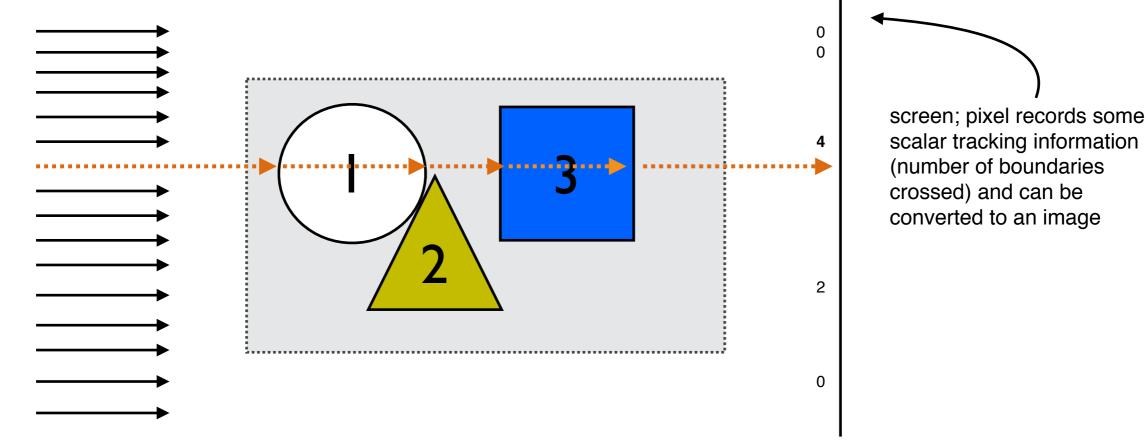
- used to create repetitions of complex structures
- but no physical boundary itself
- no material etc.



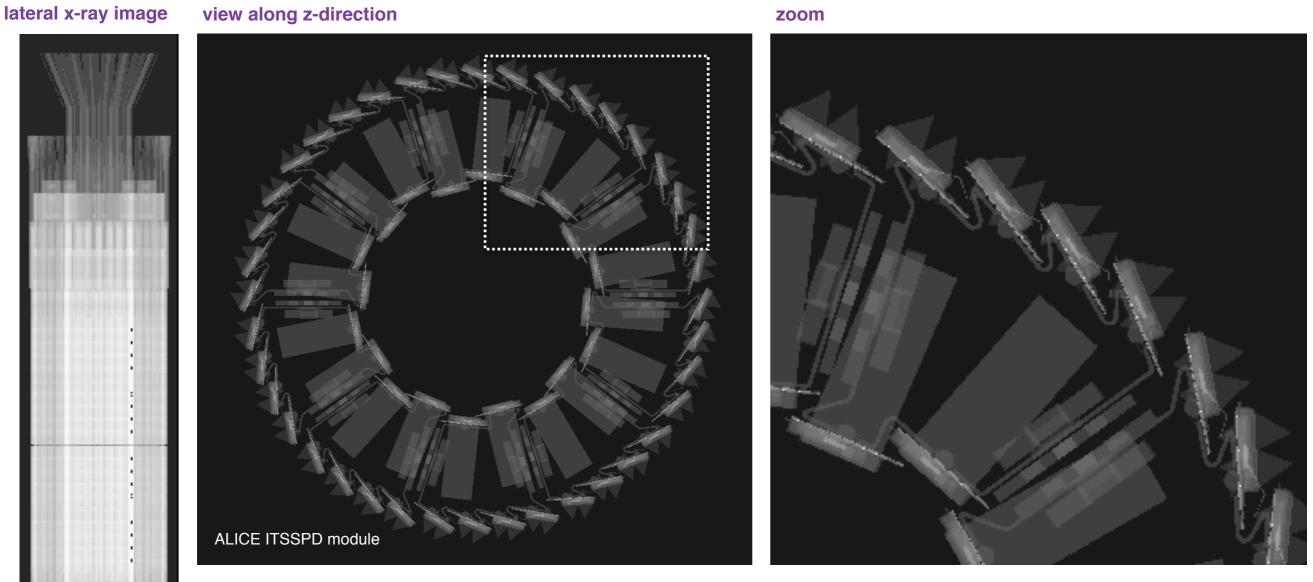

The Assembly (2)

- A lot used by ALICE, Panda, CBM, ... (typically when geometry coming from CAD)
- To use Geant4 on these geometries, need to transforms assemblies into flat list of placements
 - more memory
 - inconvenient for NavigationHistory and scoring (logical- and in-memory representation are different)
- * goal was to provide assemblies in VecGeom in the form offered also by TGeo
- implementation is now in place
 - no big magic
 - some general code improvement over TGeo; are now reusing voxel structures and components from navigation classes in favour of less code to maintain

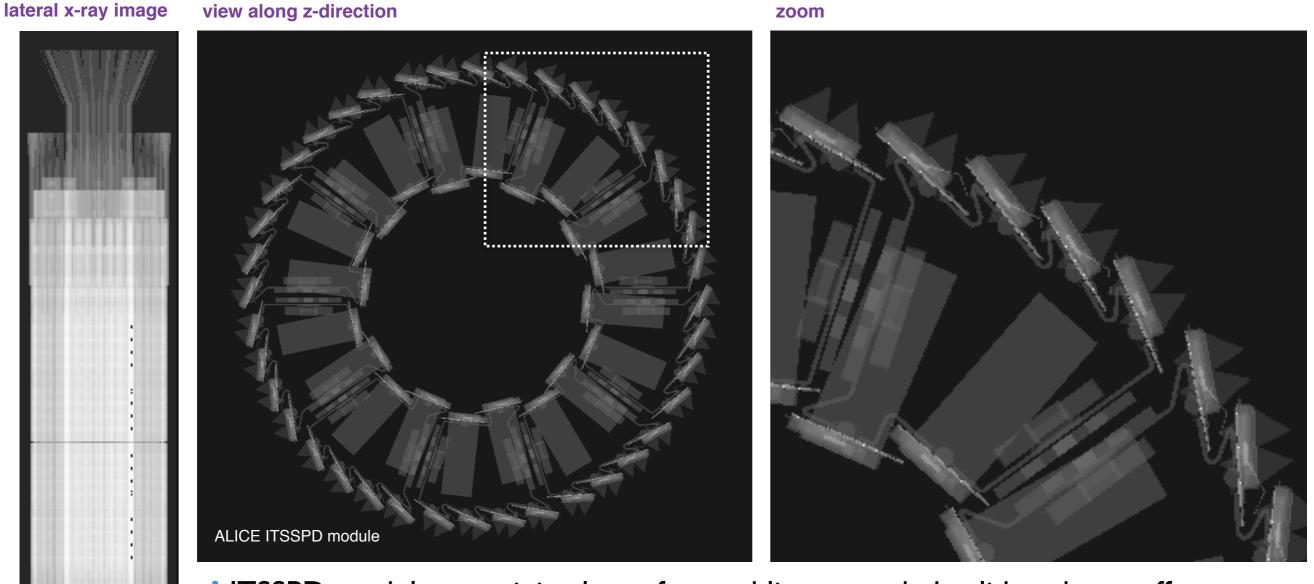
Bringing it all together


- time to test VecGeom (solids + navigation) on complex (ALICE) modules
- one standard test is the "XRayBenchmarker":
 - o follow geantinos through geometry pixel by pixel
 - record some information on screen behind object

Bringing it all together


- time to test VecGeom (solids + navigation) on complex (ALICE) modules
- one standard test is the "XRayBenchmarker":
 - follow geantinos through geometry pixel by pixel
 - record some information on screen behind object

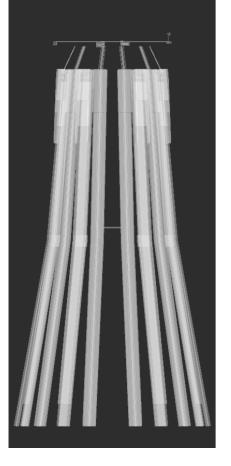
• can do this also using Geant4 + TGeo thanks to various converters


*** perfect** for **validation**; **good** to get a global idea of **library performance**

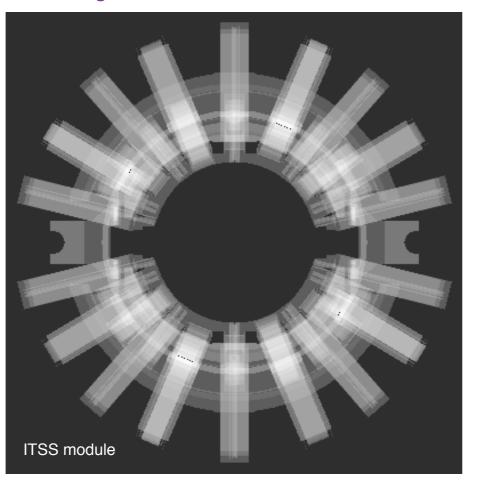
XRay - Examples and Results

ITSSPD module containing lots of assemblies, extruded solids, other stuff
 perfect agreement between G4/TGeo/VecGeom

XRay - Examples and Results


ITSSPD module containing lots of assemblies, extruded solids, other stuff
 perfect agreement between G4/TGeo/VecGeom

Overall preliminary CPU improvement for VecGeom (for this example)
 "along z-direction" 2.6x G4 3.3x TGeo
 "lateral" 9.1x G4 2.8x TGeo


testing/benchmarking (2)

lateral x-ray image

view along z-direction

"z-direction" 3.9x G4 4.1x TGeo"lateral" 7.7x G4 4.4x TGeo

- indication of good macroscopic performance of VecGeom at solid + navigation level
- *now in the process of systematically validating VecGeom for all modules/ parts of a detector description (from simple to complex)
- *this process is done for CMS, ALICE, ... and will help integration into G4
 - already found and fixed lots of bugs due to this process
- *potentially becoming a stress test which can be run regularly

Summary

Extended USOLIDS/VecGeom to be interesting for ALICE

Now ready to perform integration step into (ALICE) simulation/reconstruction