Validation of Proton Nozzle

Jae-ik Shin (KIRAMS) Sebyeong Lee (NCC)

Outline

- 1. Proposal
- 2. Status Report of "BeamNozzle" example
- 3. Comparison between simulation and measurement
- 4. Summary

Proposal

∜Goal

EM physics Validation With Proton Beam Simulation & Measurement

- 1. Development of "BeamNozzle" example
- 2. G4 MC Simulation for Validation.
- 3. Measurement of Proton Stopping Range and scattering in Water (on-going)
- 4. Comparison with monthly updated reference tags. (on-going)

Status Report of "BeamNozzle" example

Since 2014 GEANT Collaboration Meeting (Barcelona, Spain)

"BeamNozzle" example

- ✓ Simplify commercial proton therapy beam nozzle (IBA Proteus235)
- ✓ Use minimum information to avoid license of company (Single Scattering, Range Modulation Wheel)
- ✓Components for Proton Therapy beam nozzle simulation (easy-adapt to user's application)
- Support the validation data with example(on-going)

Migration from 9.6 to 10.02 MT-compatible

Detector Construction : Proton Nozzle

✤Class "ProtonNozzle"

- Set First Scatter
- Set Range Modulation
- Set Collimator
- Set Airgap

•

Detector Construction : Water Phantom

- Class "WaterPhantom" for 3D-Voxelized Phantom like CT-DICOM
- Set Size of a Water Phantom
- Set Size of a Voxel
- ✓ Use NestedParameterzation (PhantomPara)
- ✓ Adapted to G4ROOTAnalysisManger
- SD, Hit for MT-migration (on-going) Nested Parameterized volume

Voxel

IDxyz

✓ Inhomogeneous Volume

like human body

Primary Generator Action

- Use classic Primary Generator action with ParticleGun for easy usage
- Class "BeamSourceGenerator"
- ✓ Set the energy and sigma of source
- ✓ Set the beam size and incident angle(gantry rotation) of source
- Adapt the characteristics from beam optics (Emittance, Twiss parameter)
- Class "PhaseLoader"
- Needs for Multi-Field dose calculation (medical physics)
- ✓Load the beam data(phase space) from independent application (applying PhaseSaver)
- Remove ROOT-dependency, Adapt AnalysisReader (on-going)

PhysicsList

- For entry user, the example support "reference physics list"
- combination of Hadronic, Electromagnetic, Extra physics lists
- Ex) QGSP_BIC_EMX, FTFP_BERT_EMV, ...
- ✓ Remove macro-based physics list, Adapt "G4PhysicsListFactory"
- Needs for validated, well-explained physics list in medical physics
 In future implement, custom physics list from papers (H.Paganetti, etc) will support and compare with reference.

Comparison between simulation and measurement

NCC Proton Therapy Center

3D WaterPhantom @ Proton Therapy room

3D moving Ion chamber

PTW Markus Chamber (23343)

- •Sensitive volume
- •Radius 2.65mm, depth 2mm

Measurement #1 Bragg Peak

System Environment

- CentOS 6.6 64bit (kernel 2.6.32-504.el6.x86_64)
- GCC 4.9.2 (20150212 Red Hat 4.9.2-6) from devtoolset-3
- CMAKE 3.4.3
- GEANT4 10.02.p2
- Version Comparison
 ✓ GEANT4 10.01.p3 with GCC 4.9
 ✓ GEANT4 10.02.p2 with GCC 4.9
 ✓ GEANT4 10.03.b1 with GCC 4.9

Percent Depth Dose in Water Phantom

Rearrange of Detector Volume

Detective Volume =,~ Dose Accumulated Volume

Equipment for measurement

PTW Markus Chamber (23343) Sensitive volume : Radius 2.65mm, depth 2mm

PDD depending on Radius (QGSP_BIC_EMV)

PDD depdning on HadPhysics (10mm Radius)

PDD deepening on EmPhysics (10mm Radius)

PDD depdning on RefPhysicsList (10mm Radius)

RadialPhantom (under development)

- Farmer, Markus ion chamber-liked geometry
- Parameterized Volumes consisted of various angle, radius, height
- Disk (parameterized along kZAxis)
- Ring (parameterized along kRho)
- Segment (parameterized along kPhi)

Parallel Plate type Chambers (a Roos chamber, an Advanced Markus chamber and a lowenergy soft Xray chamber)

Drawing of PTW Markus chamber

Visualization of Radial Phantm

Summary

- Now on-going migration to MT compatible
- Relation between Sensitive Volume(G4) and Detector Volume
- Changes depending on EM, Hadron Physics List
- Under developing the Radial Phantom Simulation
- On-going Validation between simulation and measurement about Bragg Peak and SOBP