
Extending GeantV to
accelerators

 S.Vallecorsa for the GeantV team

Outline:
Motivation
Geometry performance
Physics
Running the whole example
Summary and plans

Geant4 collaboration meeting - September 2016

New Intel Xeon Phi processor

Motivation

New NVIDIA Tesla P100

New hardware gets more and more powerful..
Ex. Officially launched in 2016:

• Task/threads and data parallelism
are essential to exploit new
hardware capabilities

• Combining the two is much faster
than either one alone.

2

GeantV: introducing parallelism

GeantV restructures particle transport simulation in a new algorithm
Improving physics models
Including options for fast simulations
Introducing parallelism (task/process and data)

Group particles exploiting locality (geometry or physics)
Transport particles in groups (baskets)
Multi-threading and multi-tasking
Explicit memory management for NUMA aware systems

Easy portability across different architectures

The goal is x3-x5 better performance than “state of the art” Geant4
… and understand how to go beyond

3

VecGeom
Optimised library of primitive and composite solids

Core of templated kernels using abstract types

compiler optimised code for any combination of
primitive shapes (“template-shape
specialisation”)

No virtual function calls/ avoid code multiplication

SIMD vectorisation & accelerator ready

APIs for single & many-track navigation

“Inner” vectorisation of complex shapes

Uses backends

4

Currently migrating to new improved
backend interface (VecCore)

see Sandro’s ta
lk o

n

Thursd
ay

Backends

5

Abstraction of underlying intrinsics
Act as a layer between algorithmic
code and intrinsics
additional library layer (Vc/Umesimd)
Can guide behaviour of algorithms
depending on architecture (scalar/
vector/GPU)

A trait struct encapsulating standard types & properties for
different architectures.

Hides underlying vectorizing hardware from the user

Portability across platforms & vector types

https://github.com/VcDevel/Vc
https://bitbucket.org/edanor/umesimd

VecGeom on GPU

• Asynchronous data transfer

• Measured only the kernel
performance, but providing
constant throughput can
hide transfer latency

• The die can be saturated
with both large track
containers, running a single
kernel, or with smaller
containers dynamically
scheduled.

Scalar (specialized/unspecialized) Vector GPU (K20) ROOT

Just a baseline proving we can
run the same code on CPU/
accelerators, to be optimized

6

– GPU: Nvidia Kepler (K20), 2496 cores @ 0.7 GHz

Speedup for different navigation methods for the BOX shape (normalized to scalar)

VecGeom on KNL
Running set of standard navigation benchmarks using UME::SIMD backend.
KNL systems use 512 bit registers corresponding to 8DP and 16SP floating

points
Vector versus scalar speed-up using AVX2 and AVX512
Super-linear speedup for some methods
Investigating if it is compiler-related

0.0

1.8

3.5

5.3

7.0

Inside SafetyToIn DistanceToIn

Sp
ee
du
p

scalar vector

0

4.5

9

13.5

18

Inside SafetyToIn DistanceToIn

Sp
ee
du
p

scalar vector

AVX512

Intel® Xeon Phi™ CPU 7210 @
1.30GHz, 64 cores

AVX2 7

8

OMP
threads

The x-ray benchmark
Benchmarking full geometry navigation of a toy detector

“X-Ray” scan of a simple geometry

A concentric set of tubes emulating
a tracker detector

Trace one ray per pixel from one
edge to the opposite

Test the global navigation algorithm

Stress vector API + basket transport
tracing multiple identical tracks
through the same grid

Test OMP parallelism producing
multiple identical images

Scalability

0

20

40

60

80

100

120

0 75 150 225 300

SP
EE

D
U

P

NTHREADS

Scalability

classical ideal vector basket

0

35

70

105

140

175

0 75 150 225 300

SP
EE

D
U

P

NTHREADS

Speedup wrt multithreaded classical approach

ideal vector vs. classical basket vs. classical

Compare basketized navigation to
scalar Geant4 (one navigator per
thread)
vectorization enforced by API,

(UME::SIMD backend for
AVX512)

Scalability reaches ~100x for the
ideal and basket versions
Preliminary results: the whole
GeantV scheduler is being
redesigned

Intel® Xeon Phi™ CPU 7210 @ 1.30GHz,
64 cores

9

Vectorization

0.01

0.1

1

10

0 75 150 225 300

Ab
so

lu
te

 ti
m

es
 (s

)

Nthreads

Vector ideal

AVX2 AVX512

1.60

1.70

1.80

1.90

2.00

2.10

2.20

0 75 150 225 300

T(
AV

X2
)/T

(A
VX

51
2)

Nthreads

Vector ideal

High vectorization intensity achieved for both ideal and basketized cases
AVX512 brings an extra factor of ~2 to our benchmark

10

What about physics?
Objective: a vector/accelerator friendly

physics code
Started with the electromagnetic

processes
The vectorised Compton scattering

shows good performance gains

0
1
2
3
4
5
6
7
8

10 100 500 1000 5000 10000

S
pe

ed
up

Number of tracks

Speed-up on Xeon Phi(R) C0PRQ-7120
 for Compton KN model compared to Geant4

T(Geant4)/T(Scalar)

T(Geant4)/T(Vector)

11

GPU: Nvidia K20
Host: Intel Xeon E5 – 2650 @ 2.60 GHz

Intel Xeon Phi 5110P 60 cores @ 1.053 GHz

Full GeantV prototype
RT

 (s
ec

)

1

125.75

250.5

375.25

500

Nthreads
1 4 8 16 32 64 128 256

KNL AVX512 Xeon AVX2

Sp
ee

d-
up

0

4

8

12

16

20

24

28

32

36

Nthreads
1 4 8 16 32 64 128 256

KNL AVX512
Xeon AVX2

First GeantV full navigation benchmark on KNL
Tabulated physics
Simplified detector geometry
Test track transport and basketization procedure

Use UME::SIMD backend for AVX512

Intel Xeon Phi 7210 @1.30 GHz
Intel Xeon E5-2630 v3 @2.40GHz

Good scalability up
to the number of

physical cores then
rebasketizing sync

problems
(see Andrei’s talk)

12

Concurrent output

Simulated hits are produced concurrently by the different threads
Thread-safe queues have been implemented to handle asynchronous
generation of hits by several threads
Dedicated Output thread transfers the data from the output queues to ROOT I/O

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120

re
la

tiv
e

 ti
m

e
 o

ve
rh

e
a

d
 w

rt
 n

o
 I/

O

Throughput [MB/s]

GeantV concurrent I/O
8 data producer threads + 1 I/O thread

Data I/O (old)
Buffer I/O (new)

“Data” mode (sequential)
Send concurrently data to one thread dealing with
full I/O

“Buffer” mode (concurrent)
Send concurrently local trees connected to memory
files produced by workers to one thread dealing with
merging/write to disk

13

GPU schema

Broker adapts baskets to the coprocessor
Selects tracks that are efficiently processed on coprocessor
Gathers in chunk large enough (e.g. 4096 tracks on NVidia K20)
Transfers data to and from coprocessor
Executes kernels

On NVidia GPU, we are effectively using implicit vectorization
Rather than one thread per basket, we use 4096 threads each processing one

of the tracks in the basket
Cost of data transfer is mitigated by overlapping kernel execution and data transfer

We can send fractions of the full GPU's work asynchronously using streams

14

Summary & plans
A first successful iteration on KNL for geometry benchmarks was
demonstrated last June at ISC’16

Overhead due to track reshuffling is under control
Now testing and optimising the whole prototype:

Full realistic detector geometry benchmark on KNL by SC16
Concerning GPU:

Broker with ‘geometry only’ kernel works
Tabulated physics code transfers data to GPU (memory fetching from
tables maybe a bottleneck!)
Next steps:

Adapt to new navigation code and incorporate physics code into CUDA
Kernel
Running the full prototype using GPU as co-processor, understand
performance issues and optimise

15

16

Benchmark baseline

Classical approach (Geant4, ROOT)
uses a navigator per thread and
works in scalar mode

“Basket” approach uses one
navigator per volume in vectorized
mode

Crossing a layer “feeds” the next
basket

We compare GeantV basketized navigation to scalar Geant4

Basket1

Basket2

Basket3

Basket4

Basket5

Basket0

TopNavigator

LayerNavigator<0>

LayerNavigator<1>

LayerNavigator<N>

InnermostLayerNavigator

17

