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New Intel Xeon Phi processor 

Motivation

New NVIDIA Tesla P100

New hardware gets more and more powerful.. 
Ex.  Officially launched in 2016:

• Task/threads and data parallelism 
are essential to exploit new 
hardware capabilities 

• Combining the two is much faster 
than either one alone.
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GeantV: introducing parallelism

GeantV restructures particle transport simulation in a new algorithm 
Improving physics models  
Including options for fast simulations 
Introducing parallelism (task/process and data) 

Group particles exploiting locality (geometry or physics)
Transport particles in groups (baskets) 
Multi-threading and multi-tasking
Explicit memory management for NUMA aware systems

Easy portability across different architectures

The goal is x3-x5 better performance than “state of the art” Geant4 
… and understand how to go beyond
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VecGeom
Optimised library of primitive and composite solids

Core of templated kernels using abstract types

compiler optimised code for any combination of 
primitive shapes (“template-shape 
specialisation”) 

No virtual function calls/ avoid code multiplication 

SIMD vectorisation & accelerator ready

APIs for single & many-track navigation 

“Inner” vectorisation of complex shapes 

Uses backends
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Currently migrating to new improved 
backend interface (VecCore) 

see Sandro’s ta
lk o
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Backends
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Abstraction of underlying intrinsics 
Act as a layer between algorithmic 
code and intrinsics 
additional library layer (Vc/Umesimd)
Can guide behaviour of algorithms 
depending on architecture  (scalar/
vector/GPU)

A trait struct encapsulating standard types & properties for 
different architectures.

Hides underlying vectorizing hardware from the user

Portability across platforms & vector types

https://github.com/VcDevel/Vc
https://bitbucket.org/edanor/umesimd



VecGeom on GPU

• Asynchronous data transfer

• Measured only the kernel 
performance, but providing 
constant throughput can 
hide transfer latency 

• The die can be saturated 
with both large track 
containers, running a single 
kernel, or with smaller 
containers dynamically 
scheduled.

Scalar (specialized/unspecialized) Vector GPU (K20) ROOT

Just a baseline proving we can 
run the same code on CPU/
accelerators, to be optimized
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– GPU: Nvidia Kepler (K20), 2496 cores @ 0.7 GHz

Speedup for different navigation methods for the BOX shape (normalized to scalar)



VecGeom on KNL
Running set of standard navigation benchmarks using UME::SIMD backend.
KNL systems use 512 bit registers corresponding to 8DP and 16SP floating 

points 
Vector versus scalar speed-up using AVX2 and AVX512  
Super-linear speedup for some methods
Investigating if it is compiler-related
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OMP 
threads 

The x-ray benchmark
Benchmarking full geometry navigation of a toy detector

“X-Ray” scan of a simple geometry 

A concentric set of tubes emulating 
a tracker detector 

Trace one ray per pixel from one 
edge to the opposite 

Test the global navigation algorithm  

Stress vector API  + basket transport 
tracing multiple identical tracks 
through the same grid 

Test OMP parallelism producing 
multiple identical images



Scalability
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classical ideal vector basket
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Speedup wrt multithreaded classical approach 

ideal vector vs. classical basket vs. classical

Compare basketized navigation to 
scalar Geant4 (one navigator per 
thread)
vectorization enforced by API, 

(UME::SIMD backend for 
AVX512) 

Scalability reaches ~100x for the 
ideal and basket versions 
Preliminary results: the whole 
GeantV  scheduler is being 
redesigned

Intel® Xeon Phi™ CPU 7210 @ 1.30GHz, 
64 cores
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Vectorization
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High vectorization intensity achieved for both ideal and basketized cases
AVX512 brings an extra factor of ~2 to our benchmark 
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What about physics?
Objective: a vector/accelerator friendly 

physics code 
Started with the electromagnetic 

processes 
The vectorised Compton scattering 

shows good performance gains
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Speed-up on Xeon Phi(R) C0PRQ-7120 
 for Compton KN model compared to Geant4  
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GPU: Nvidia K20
Host: Intel Xeon E5 – 2650 @ 2.60 GHz

Intel Xeon Phi 5110P 60 cores @ 1.053 GHz



Full GeantV prototype  
RT
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First GeantV full navigation benchmark on KNL
Tabulated physics 
Simplified detector geometry   
Test track transport and basketization procedure

Use UME::SIMD backend for AVX512 

Intel Xeon Phi 7210  @1.30 GHz 
Intel Xeon E5-2630 v3 @2.40GHz

Good scalability up 
to the number of 

physical cores then 
rebasketizing sync 

problems 
(see Andrei’s talk)
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Concurrent output

Simulated hits are produced concurrently by the different threads
Thread-safe queues have been implemented to handle asynchronous 
generation of hits by several threads 
Dedicated Output thread transfers the data from the output queues to ROOT I/O
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GeantV concurrent I/O 
8 data producer threads + 1 I/O thread 

Data I/O (old) 
Buffer I/O (new) 

“Data” mode  (sequential)
Send concurrently data to one thread dealing with 
full I/O 

“Buffer” mode (concurrent)
Send concurrently local trees connected to memory 
files produced by workers to one thread dealing with 
merging/write to disk 
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GPU schema

Broker adapts baskets to the coprocessor
Selects tracks that are efficiently processed on coprocessor 
Gathers in chunk large enough (e.g. 4096 tracks on NVidia K20) 
Transfers data to and from coprocessor 
Executes kernels 

On NVidia GPU, we are effectively using implicit vectorization
Rather than one thread per basket, we use 4096 threads each processing one 

of the tracks in the basket 
Cost of data transfer is mitigated by overlapping kernel execution and data transfer

We can send fractions of the full GPU's work asynchronously using streams
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Summary & plans
A first successful iteration on KNL for geometry benchmarks was 
demonstrated last June at ISC’16

Overhead due to track reshuffling is under control 
Now testing and optimising the whole prototype:

Full realistic detector geometry benchmark on KNL by SC16 
Concerning GPU: 

Broker with ‘geometry only’ kernel works 
Tabulated physics code transfers data to GPU (memory fetching from 
tables maybe a bottleneck!)
Next steps: 

Adapt to new navigation code and incorporate physics code into CUDA 
Kernel 
Running the full prototype using GPU as co-processor, understand 
performance issues and optimise
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Benchmark baseline 

Classical approach (Geant4, ROOT) 
uses a navigator per thread and 
works in scalar mode

“Basket” approach uses one 
navigator per volume in vectorized 
mode 

Crossing a layer “feeds” the next 
basket

We compare GeantV basketized navigation to scalar Geant4 
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