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Outline – EM Physics Models
•  Context
•  Approaches

–  Tabulated (pre-simulated) reactions
–  Borrowing distributions from established G4 models 
–  Re-constituted modeling

•  EM processes
–  Electron models
–  Photon models

•  Validation & speedup of photon models
•  Outlook
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Approaches in Modeling
•  Tabulated (pre-simulated) reactions

–  Use 5 G4 interactions per (projectile, target, energy) tuple, 
–  Aims to obtain a (mostly) realistic shower development 
–  Choice of production threshold in energy for each library created
–  Used as a first implementation

•  “Straight-forward” vectorization & new sampling
–  Borrowing distributions from established G4 models
–  Allows faster ‘startup’ of models
–  Used for photon processes

•  Re-constituted modeling “from the ground up”
–  Recalculation from first principles of models (as applicable)
–  Went back to original measurements/tabulations for available 

‘core’ quantities
–  To date, undertaken for all electron processes
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Photon Models: Sampling and its Validation

•  Physics validation
–  simulate interactions at fixed input energy points
–  compare results (final states of interaction) w.r.t “Geant4” (code 

copied/extracted from Geant4)
•  Criteria

–  χ2 comparison & p value
–  Plot ratio of distributions, residuals
–  Q-Q plot: quantiles of two distributions ( 2% point vs 2% point, 

4% vs 4%, … )
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Verification of Compton Klein Nishina model  – 1 MeV 
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Verification of Compton Klein Nishina model – 100 MeV 
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Preliminary Validation: Alias Sampling Method vs. Geant4
•  Compton:  scattered photon energy and angular distributions 

with input photon energy = 10 MeV (Vector)

1%-level agreement up to 100 MeV with alias table size [100,200]
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Validation and Performance Evaluation (Preliminary)
•  Performance measurement

–  10 experiments, 100 repetitions per experiment
–  time for  simulating N secondary interactions with a exponentially 

falling input energy spectrum in the range;    
•  input energy range = [2MeV:20MeV] with 16 Z-elements 
•  also tested in E [10keV:1MeV], E [10MeV:1GeV], E [10GeV:1TeV]
•  note that performance of Geant4 depends on the energy range

–  sample and store secondary particles, and update primary tracks
–  speedup = scalar/vector or scalar/GPU as the number of input 

particles (tracks) for the same task
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Preliminary Performance: Alias Sampling Method
•  Vector performance

–  input particle energy: 2-20 MeV (valid range for all models) 
–  using 16 elements (random for each track) 
–  MIC (Intel Xeon Phi 5110P 60 cores @ 1.053 GHz) - 8 vector 

pipelines for double precision – see also SSE/AVX in backup
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Preliminary Performance: Alias Sampling Method – GPU
•  GPU

–  GPU: Nvidia Kepler (K20), 2496 cores @ 0.7 GHz - <<<26,192>>> 
–  Host: Intel Xeon E5 – 2650 @ 2.60 GHz
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Next steps & Outlook
•  Integration into GeantV tracking loop – with validation

–  a single gamma processes (in progress)
–  multiple gamma processes
–  electron process(es)

•  Full set of electron & gamma processes in tracking loop
–  Validation of EM showers
–  Profiling & optimisation
–  Speedup evaluation

•  Neutron processes
–  Process cross section – full reevaluation (BARC)
–   
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Electron processes and models
•  Model for multiple scattering prepared

–  Portable between G4 and GeantV
–  Approach & validation presented in 2015 Geant4 workshop
–  Released as ‘GS’ Mult.Scat. model in Geant4 10.2 (Dec 2015)

•  Models for bremmstrahlung
–  Prepared new ‘ground-up’ implementation of brem
–  Fully integrated density & LPM effects
–  Identified correction for LPM effect in G4 brem model (fixed) 

•  Models for ionisation

•  Status
–  Further validation underway
–  Integration into GeantV tracking is in preparation
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VecPhys Summary
•  Demonstrated feasibility of implementing electromagnetic 

physics models for scalar, Vector(SIMD) and GPU (SIMT) 
architectures with common source code

•  Integrated different sampling methods (alias, adaptations of 
accept/reject) for models of photon processes

•  New electron models ‘from the ground up’ – multiple 
scattering fully validated in Geant4 simulations

•  Validating physics results with Geant4 and evaluating 
computing performance

•  Outlook
–  Optimize further for both SIMD and SIMT     
–  Integrate in the GeantV framework
–  Measure performance in full simulation
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Magnetic Field Propagation
Ananya
John Apostolakis

Outline
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•  GeantV and magnetic field tracking 
•  The CMS magnetic field

–  Approximation using Bilinear Interpolation
–  Vectorization and memory layout
–  Optimization
–  VTune Analysis

•  Vectorization of Integration of motion 



Problem statement
•  Start with sample values of 2D CMS field.
•  Assume phi-symmetric field. 
•  Find magnetic field given a point in 3D space.  
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WHAT DO WE DO?
•  Read given 2D map.
•  Find corresponding magnetic field using bilinear interpolation 

on values from map.
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Vectorization
•  "Vectorization" (simplified) is the process of rewriting a loop so that instead 

of processing a single element of an array N times, it processes (say) 4 
elements of the array simultaneously N/4 times.

•  What are we doing?
–  Processing multiple particles/tracks simultaneously
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Different Ordering of gather
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observations

•  Speedup factor of ~3

•  Semi-realistic benchmark:
–  Half the points are new; the other half are ‘moved’ near to previous values.
–  Exponential random distribution.
–  Time reduced by ~5%. Likely effect is from cache.

•  Difference in performance from changing doubles to floats: 
–  3-20% for sequential
–  30-40% for vector version

•  Difference in performance from changing order of memory operations:
–  5-7% for sequential 
–  5-20% for vector version
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Integrating motion
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Field Propagation - Outlook
•  Vectorized field propagation is in progress

–  Field & equation of motion vectorised 
–  Helix and different RK steppers vectorised 
–  ‘Driver’: different methods for keeping vectorisation when 

handling multiple tracks are under investigation
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Backup slides
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Vtune analysis
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