
Auto-vectorization:
recent progress

Guilherme Amadio, Sofia Vallecorsa

Geant4 Collaboration Meeting

SIMD Vectorization

● SIMD = Single Instruction, Multiple Data
● Auto-vectorization: automatic optimization of

scalar code to use SIMD instructions done by the
compiler

● Results vary greatly between compilers, but Intel
C/C++ compiler has shown very good results
recently

● Scalar code must be written carefully to avoid
issues like misalignment, aliasing, data
dependencies, etc, which prevent vectorization

2

SIMD Programming Models

● Auto-vectorization

● OpenMP SIMD

● Compiler Pragmas

● SIMD Library

● Compiler Intrinsics

● Inline Assembly

float a[N], b[N], c[N];

for (int i = 0; i < N; i++)
 a[i] = b[i] * c[i];

float a[N], b[N], c[N];

#pragma omp simd
#pragma ivdep
for (int i = 0; i < N; i++)
 a[i] = b[i] * c[i];

__m256 a, b, c;

a = _mm256_mul_ps(b, c);

Vc::SimdArray<float, N> a, b, c;

a = b * c;

__asm {
 vmulps ymm0, ymm1;
};

3

VecCore Backend Interface

● SIMD Vector Size
● Regular arithmetics operators
● Get/Set individual values in SIMD vector
● Load/Store SIMD vector to memory
● Gather/Scatter SIMD vector from/to

non-contiguous memory
● Masking/Blending Operations
● SIMD-enabled math functions
● Implementation varies for each

backend
● Main backends: Scalar, Vc, UME::SIMD

4

VecGeom Benchmarks on Intel® Skylake (AVX2)

● Everything was
compiled with Intel
C/C++ compiler 16.0.2

● Implementations
marked with “No SIMD”
were compiled with
“-no-vec”

● Other implementations
were compiled with “-O3
-march=native”

● Vc gives best
performance on Skylake,
some scalar code gets
auto-vectorized

5

6

VecGeom Benchmarks on Intel® Xeon Phi™ (KNL)
● Everything was compiled

with Intel C/C++ compiler
16.0.3

● Used “-O3 -xMIC-AVX512”
● Contrary to AVX2

benchmarks on Skylake,
UME::SIMD gives best
performance on Knights
Landing

● Scalar code under Vector API
shows auto-vectorization in
many cases 7

8

VecPhys Benchmarks (Electromagnetic Physics Models)

● Compiled with
GCC Compiler

● Big speedup
respective to Geant4
models, except for
KleinNishina

● Vc backend offers
best performance for
physics models

9

VecPhys Benchmarks (Electromagnetic Physics Models)

● Compiled with
Intel® C/C++ Compiler

● Big speedup
respective to Geant4
models, except for
KleinNishina

● Vc backend offers
best performance for
physics models

● ICC can
auto-vectorize more
code than GCC

scale!

10

Summary

● Auto-vectorization is a powerful tool and compilers are getting better at it.
○ PRO: Almost “free lunch” provided the code is free of “vectorization hazards”

○ CONS: There are still differences among compilers, operations, architectures.

● However explicit vectorization using specific libraries still gives significantly the

best result (ex. Vc for AVX2 and UME::SIMD for AVX512)

11

