Progress and Plans in Radioactive Decay

Dennis Wright
Geant4 Collaboration Meeting
15 September 2016

Outline

- Progress last year
 - decay by neutron emission, better energy conservation, improved photon evaporation and gamma level handling
- Projects underway
 - gamma correlation, beta-delayed n and p, floating levels, biasing work
- What's next
 - biasing, database, resolution of floating levels

Progress Since Last Year

- Decay by neutron emission added
 - proton decay already added Oct. 2015
- Energy conservation much improved
 - α decay < 1 eV
 - β decay \sim eV
 - IT, EC ~ 30 eV
 - G4VAtomicDeexcitation now used (including Auger and fluorescence)
 - temporary fix of EC and IT proposed by Andreas Zoglauer
 - fix uses approximate shell energy method for handling outer electrons

Progress Since Last Year

- Work begun to improve biasing code
 - rename method names to be more meaningful: GetTaoTime()
 → ConvolveSourceTimeProfile()
 - begun code refactoring: smaller methods, eyc.
 - add production of gamma and electron spectra from deexcitation of excited levels in biased mode
- Removed obsolete classes.
 - G4RIsotopeTable
 - G4NuclearDecayChannel and classes based on it
 - G4AlphaDecayChannel, G4BetaMinusDecayChannel, G4BetaPlusDecayChannel, G4ITDecayChannel, G4KShellECDecayChannel, G4LShellECDecayChannel, G4MShellECDecayChannel, G4ProtonDecayChannel

Progress Since Last Year

- G4RadioactiveDecay::DecayIt() moved from protected to public
 - now consistent with PostStepDoIt() in other hadronic processes
 - enables process-level testing
- Photon evaporation model improved
 - cleaner design
 - several bugs removed
 - new gamma level management
- New databases now available with floating levels
 - RadioactiveDecay5.0
 - PhotonEvaporation4.0

Projects Underway

Correlation of gamma emission

- angular distribution of emitted gamma will depend on previous emissions
- requires addition of multi-polarity information in DB and modification of reader
- most of the required code is implemented (G4PolarizationTransition, etc.)

Beta-delayed neutron and proton emission

- emission of n or p after beta decay to highly excited nuclear state
- current plan:
 - add neutron emission branch to appropriate levels in DB → twostep decay will then happen
 - add new decay class for beta decay to continuum

Projects Underway

- Floating (or X) levels
 - discrete levels in nucleus whose energy is either unknown or poorly determined
 - a chain of well-defined decays may be built on an X-level, leaving absolute scale undetermined
 - indicated in ENSDF by X,Y,Z,U,V,W,A,B,C,D,E
 - currently dealing with these as unique states
 - ²³⁴Pa[73.92+X], for example
 - replaces ²³⁴Pa[73.920004]
 - Required significant extension of G4Ions in /particles
 - to enable ion creation and use of particle gun
 - X, Y, Z, etc. dealt with as char

Projects Underway

- Floating levels (continued)
 - G4RadioactiveDecay modified (5.0 onward):
 - parent levels: P 73.92 +X 69.54
 - daughter levels: BetaMinus 0 +X 69.93 398.6
 - G4PhotonEvaporation modified (4.0 onward)
 - all levels have floating level column: "-" for non-floating and "+X", "+Y", ... for floating
 - all levels like 73.920004 removed
- Is irreproducibility really gone?
 - some tests still to do

What's Next?

- Continue work on biasing
 - remove analysis code from RDM process
 - use scoring instead
 - fix negative values bug in accumulated decay time spectra
 - use generic biasing methods
- Resolve some floating levels
 - 92 exist
 - enough data to resolve several of them
- Implement reduced number of DB files
 - version already available for photon evaporation
 - do the same for RDM

What's Next?

- Revisit multi-threading
 - RDM code still far from optimal
- More detailed atomic de-excitation code
 - Kibedi code a good possibility
 - any conflict with low energy EM?
- Development of binary databases to save time and memory
- General code improvement
 - tests show Geant4 as a whole is CPU-bound
 - true for RDM?

Tasks (green: completed, red: in progress)

- Martin Venhart
 - examine 92 known floating levels to see if existing data can be used to fix them
 - contact T. Kibede to see if Geant4 may use his atomic relaxation code
- Laurent Desorgher
 - add column in photon evaporation database for multi-polarity and delta
 - add beta-delayed neutron, proton data to database
- Alberto Ribon
 - test for thread saturation in random number generation
- Alex Howard
 - continue testing of random number generators

Tasks

Makoto Asai

- add character argument to ions, as well as Get, Find, Create methods
- attach scorer to process (for biasing)
- work on binary database implementation

Andrea Dotti

- test for thread saturation in random number generation
- work on binary database implementation

Dennis Wright

- make RDM model for testing which has all biasing code removed
- replace G4UAtomicRelaxation with G4VAtomicRelaxation
- implement double beta decay using spectrum from Luciano Pandola

Marc Verderi

check correctness of generic biasing in both at-rest and in-flight modes

Tasks

- Luis Sarmiento
 - write code for beta-delayed neutron, proton channel
- Unassigned
 - check lower limit on life time (10e-14?) ⁹B decays
 - develop new RDM example (rdecay03) to demonstrate new decay channels
 - according to XEON-Phi tests Geant4 is now CPU-bound -> general improvement in coding is required
 - allow assignment of RDM to G4Region as well as G4LogicalVolume