

SPhN (Nuclear Science Division)

Update on intra-nuclear cascade models [Mostly on the new eta production in INCLXX]

Jean-Christophe David

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy A few words about Binary Cascade and Bertini Cascade

□ η(ω) in INCL++

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Binary Cascade

From Gunter Folger

For Binary Cascade and Binary Light Ion Cascade,

there has been no development in the last year.

1st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

From Dennis Wright

Updates and Plans for Bertini Cascade

• For 10.3

– complete extension of kaon interactions from ~5 to ~15 GeV

- required the addition of 8- and 9-body final state partial cross sections, and inclusion of data up to 32 GeV to get correct behavior
- reactions enabled: K+, K-, K0, K0bar on p, n
- no longer do filtering of low energy gamma-nuclear final states by default: too time-consuming

• For 10.4

- re-tune gamma-nuclear with larger data set
- re-examine giant dipole physics
- examine de-excitation code for possible bug: may be the cause of observed over-production of low energy neutrons

Plan (2)

A few words about Binary Cascade and Bertini Cascade

🔲 η(ω) in INCL++

- Introduction
- Motivations
- Inputs:
 - > σ_{R} (production, scattering, absorption)
 - \succ features of the reaction products (particles, E, θ)
 - in-medium Potential
 - > Decay
- Results

1st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Introduction

INCL++ (INCLXX)

- a reaction code in Geant4
- INC (~10 MeV \rightarrow 10-15 GeV)
- followed by a de-excitation code
- until 2010-2011 → 2-3 GeV
- Then, with Multipion channels \rightarrow 10-15 GeV
- However other particles are produced
 > η, ω, ... 2016
 > K, Y 2017
 → Minor roles, but New Physics

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Motivations

<u>Why η, ω?</u>

- a necessary step toward K, Y
- what's the role in π production? (decay product)
- source of dileptons (= clean information of nuclear matter)
- to study rare decays violating a conservation law

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

• Inputs:

$\sim \sigma_{R}$ (production, scattering, absorption)

- Features of the reaction products (particles, E, θ)
- in-medium Potential
- Decay

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

$NN \rightarrow \eta + X$

exclusive (NN \rightarrow NN η): Fit on exp.data

inclusive (NN $\rightarrow \eta$ + X): parameterization from Sibirtsev - Z. Phys. A 358, 357 (1997).

 $\sigma_{\rm R}$ - production

case of pn!!! . Exclusive At low E pn = 6.5 pp At high E hyp. : same factor . Inclusive Same hypothesis... . pn → dη considered as pn → pnη

T_p ≈ 14 GeV

Cross section (µb)

Geant 4

 $\eta N \rightarrow \eta N$

Fit of ANL-Osaka model result Courtesy of H. Kamano

ANL-Osaka model - PRC 88, 035209 (2013)

 $\sigma_{\rm R}$ - scattering

a Dynamical Coupled-Channel model based on Lagrangians

T_η ≈ 1.5 GeV

$\eta N \rightarrow X$

Fit of ANL-Osaka model results Courtesy of H. Kamano

- $\eta N \rightarrow \eta N$ (elastic)
- $\eta N \rightarrow \pi N$
- $\eta N \rightarrow \pi \pi N$

• $\eta N \rightarrow KY (Y=\Lambda \text{ or } \Sigma)$

up to now no KY in INCL++, so used later

Update on intra-nuclear cascade models

σ_{R} - absorption

$\eta N \rightarrow X$

Fit of ANL-Osaka model result Courtesy of H. Kamano

 σ_{R} - absorption

- $\eta N \rightarrow \eta N$ (elastic)
- $\eta N \rightarrow \pi N$
- $\eta N \rightarrow \pi \pi N$

BUT THE RESULTS WILL BE SHOWN WITH

 $\pi N = Tot - elastic - \pi \pi N$

1st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

• Inputs:

- \succ σ_{R} (production, scattering, absorption)
- Features of the reaction products (particles, E, θ)
- in-medium Potential
- Decay

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Final products $\mathbf{p} - \mathbf{\theta}$

$A+B \rightarrow C+D$

- Type of C and D \rightarrow Obvious or via Clebsch-Gordan
- $E \rightarrow$ given by the center-of-mass energy and masses
- $\theta \rightarrow$
- No information:
- Information:

Isotropy or Phase-Space Fit on exp.data or Model results

$A+B \rightarrow C+D+...$

- Type of C,D,... \rightarrow Clebsch-Gordan or model
- E, $\theta \rightarrow$ Phase-Space

1st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

$\pi N \rightarrow \eta N$

Reminder: Only the shape is important!

Fit on exp.

NB: ANL-Osaka model could be used also

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Inputs

Final products $\mathbf{p} - \mathbf{\theta}$

Ferrara, Italy

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

From Fritiof (geant4 10.1-p02)

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Final products $\mathbf{p} - \mathbf{\theta}$

When 1 $\boldsymbol{\eta}$

2 nucleons up to 3-4

So multipion applied

$NN \rightarrow NN\eta + x\pi$ (from NN \rightarrow NN + $x\pi$)

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

- Inputs:
 - \succ σ_{R} (production, scattering, absorption)
 - Features of the reaction products (particles, E, θ)
 - in-medium Potential
 - Decay

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

• Inputs:

- \succ σ_{R} (production, scattering, absorption)
- Features of the reaction products (particles, E, θ)
- in-medium Potential
- > Decay

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

 \rightarrow η decays only after being emitted

 \rightarrow Decay can be switched off (option using a time threshold)

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Results

η production

- **π⁺(680 MeV/c) + X** (Ye. S. Golubeva et al, NPA 562 (1993) 389) •
 - * $\sigma_{\eta_{production}}$ with several targets * T_{η} spectrum (X = ¹²C)
- p(1 GeV) + X (Ye. S. Golubeva et al, NPA 562 (1993) 389) •
 - $\sigma_{\eta_{production}}$ with several targets
 - * T_n spectrum (X = ¹¹B)

- p(3.5 GeV) + Nb (G. Agakishiev et al., PRC 88, 024904 (2013)) •
 - transverse momentum distribution

Geant 4

Update on intra-nuclear cascade models

Threshold

Subthreshold

Reactions

and

Results

π production

HARP experiment

η: no effect on π production

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Results π^+ (680 MeV/c) + ¹²C (η Spectrum) Graph Graph $0^{\circ} < \theta_{\eta} < 30^{\circ}$ $0^{\circ} < \theta_{\eta} < 30^{\circ}$ 18 16 14 dơ/dΩ_η (μb/sr) dơ/dΩ_η (μb/sr) 12 10 12 50 MeV 33 MeV 60 Τ_η (MeV) 140 20 40 100 120 ō 20 ⁶⁰ Τ_η (MeV) 40 100 120 140 $V_{\eta} = 0 \text{ MeV}$ Graph $0^{\circ} < \theta_{\eta} < 30^{\circ}$ dơ/dΩ_η (μb/sr) Better Results with V=0! 10 Geant 4 100 120 140 20 40 60 Τ_η (MeV)

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Results

$p(1 \text{ GeV}) + {}^{11}\text{B}$

p(1 GeV) + X

V=0, not better not worse...

BUT subthreshold reaction \rightarrow more tricky (momentum distribution of the Ns...)

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Pretty good result compared to experiment and other models

11st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Conclusions

- η is in INCL++ and gives good results
- A first implementation in Geant4 works
- Some (minor) changes until the *official* version
- ω is almost in INCL++ and soon in Geant4 (unfortunately no data to test it)
- See you next year for the strangeness (PhD Jason Hirtz)

1st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

backup

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

$\sigma_{\rm R}$ - production

-8-

$NN \rightarrow \omega + X$

 $pp \rightarrow \omega + X - HADES$

 $pp \rightarrow \omega + X - our Fit$ $pp \rightarrow pp \omega - Hibou et al.$

pp --> ppω - Cosy pp --> ppω - Landolt

 $pp \rightarrow pp\omega - our Fit$

10000

pp --> ω + X - Fit Sibirtsev et al.

pp --> ppω - Fit Cassing et al.

exclusive (NN→ NNη): parameterization from Cassing - NPA 604, 455-465 (1996) modified (low energies)

inclusive (NN→ η + X):
 parameterization from Sibirtsev
 modified (recent datum from
 HADES - A. Rustamov et al., AIP
 Conference Proceedings, 1257,
 736 (2010))

case of pn factor 3

$\sigma_{\rm R}$ - production

$NN \rightarrow \omega + X$

 $pp \rightarrow \omega + X - HADES$

 $pp \rightarrow \omega + X - our Fit$

 $pp \rightarrow \omega + X$ - Fit Sibirtsev et al.

 $pp \rightarrow pp\omega$ - Experimental data

exclusive (NN \rightarrow NN η): parameterization from Cassing - NPA 604, 455-465 (1996) modified (low energies)

inclusive (NN $\rightarrow \eta$ + X): parameterization from Sibirtsev modified (recent datum from HADES - A. Rustamov et al., AIP Conference Proceedings, 1257, 736 (2010))

case of pn factor 3

Collaboration Meeting 12-16 September 2016 Ferrara, Italy

21st Collaboration Meeting 12-16 September 2016 Ferrara, Italy

Ferrara, Italy

→ 2 particles: Isotropy --- 3 particles: Phase-Space

 \rightarrow η decays only after being emitted

 \rightarrow Decay can be switched off (option using a time threshold)

1st Collaboration Meeting 12-16 September 2016 Ferrara, Italy