Update on Geant4 Simulations of Lead Spallation Target at n_TOF Facility

<u>Miguel A. Cortés-Giraldo</u>¹, J. Lerendegui-Marco¹, M. Sabaté-Gilarte^{1,2}, C. Guerrero¹, J. M. Quesada¹

Universidad de Sevilla (Spain)
 CERN (Switzerland)

21st Geant4 Collaboration Meeting

Ferrara (Italy), September 15th, 2016

The n_TOF facility at CERN

High resolution neutron cross section measurements

- Time of Flight (ToF) Technique
- $\Delta E/E(1 \text{ keV})$: EAR1 (185m) $\rightarrow \sim 3 \cdot 10^{-4}$, EAR2(19m) $\rightarrow \sim 8 \cdot 10^{-3}$
- Flux (n/cm²/pulse): EAR1: ~4-10⁵ EAR2: ~7.5-10⁶
- Neutron spectrum from thermal to few GeV (highest among similar facilities)
- Applications:
 - Nuclear Technologies
 - ADS, Fast reactors
 - Astrophysics
 - s-process (AGB stars)

nTOF

Basic Nuclear Physics

Pb Spallation Target – Technical Details

Full Geometry Model

- 20 GeV/c protons, with an incidence angle of 10 deg.
- Gaussian profile proton beam (FWHM=3.53cm).
- Precise implementation of the cooling and moderation layers.
- All the components have been implemented following the technical drawings.
- Special care in the composition of the lead target and the surrounding materials.

Geometry Model – Details

Geometry Model – Details

Simulation Output: Scorers @ target exit

7

EAR2 : Detailed 3D scorer, beam line shape

- Scoring surfaces defined as in simulations with FLUKA carried out by n_TOF collaboration.
 - To use existing transport codes to get results at EAR1 and EAR2 from the GEANT4 simulation @ target.
- Angular acceptance limited to 4 deg @EAR1 and 10 deg @EAR2 ↔ isotropic spectra within this solid angle.
- Collected information at scorer:
 Position momentum energy type of

Position, momentum, energy, type of particle and time.

EAR1: 2D scorer @ entrance of beam line

Transport Code

Real simulation to the EAR's : **Unaffordable CPU Time**

• ~Thousands of instances are created for each scored neutron (with $\theta \le 4 \text{ deg}$) and sent scanning a 2cm radius scorer in EAR1 (185 m distance) or EAR2 (~19 m)

Input with the position and dimensions of the collimators in both beam lines

•Simplified transport: If a neutron hits a collimator is discarded

Results after transport to EAR1

Geant 4

neutron E distr. @EAR1 (v10.1.1 & ENDF/B-VII.0) QGSP INCLXX HPT (x0.808) QGSP BIC HPT (x0.610) 10⁵ FTFP BERT HPT (x0.501) Evaluated 10⁴ Evaporation Spallatior Epitherma herma 40 20 0 -20 -40 **10**¹⁰ 10⁻² 10⁻¹ 10⁹ 10² 10³ 10⁴ 10⁵ 10⁶ 10^{7} 10⁸ 10 1 E [eV]

=lux/ln(E)/pulse

Residuals [%]

Normalization factors calculated using flux integral in **1-10 keV**.

*_INCLXX_HPT physics lists provide better normalization factors.

Once normalized, FTFP_BERT_HPT

follows slightly better the spectrum shape at **spallation** energies, but it has the largest deviation as for **yield**.

• Norm factor varies from 0.808 (QGSP_INCLXX_HPT) to 0.501 (FTFP_BERT_HPT).

- More precise collimation data used.
 - It improves significantly the integral flux calculated.
- Trends between PLs are similar to those found with v10.1.1
- Tracking of neutrons
 was suspended below
 1 eV to improve
 simulation speed (more on this, later).

neutron E distr. @EAR1 (v10.2.2 & G4NDL4.5)

 Normalization factors calculated using integral for 1-10 keV.

13

- *_INCLXX_HPT physics lists provide better normalization factors.
- **FTFP_BERT_HPT** follows better the spectrum shape at **spallation** energies, but it still presents the largest deviation w.r.t. to integral flux.

• Norm factor varies from 1.033 (QGSP_INCLXX_HPT) to 0.664 (FTFP_BERT_HPT).

Geant 4

FTFP-based PLs only!

BERP produces a lower
amount of neutrons
compared to BERT
(good), but does not
reproduce the spectrum
shape so well at
spallation energies.

QGS-based PLs only!

- **BIC** seems to worsen above ~200 MeV w.r.t. v10.1.1.
- Custom implementation of QBBC with NeutronHP + neutron Elastic XS for Thermal Energies (<4 eV) (QBBC_HPT), please take this calculation as preliminary

Results after transport to EAR2

u

Geant 4

nTOF

- Norm factor varies from 0.715 (QGSP_INCLXX_HPT) to 0.439 (FTFP_BERT_HPT).
- Actual distance from EAR2 ground to target to be accurately determined.
 - It may improve agreement between calculations and experimental neutron flux
- Precise quantification of neutrons scattered at collimators might also change the calculated spectrum shape.
 - Transport through collimators is done "ideally".

Conclusions

Conclusions

- Slightly better agreement as for neutron integral flux calculation @EAR1 thanks to more accurate collimation data.
- Experimental integral flux evaluated @EAR2 still preliminary need to know accurate total distance.
 - More accurate simulation of collimators closer to EAR2 may be needed.
- Unexpected CPU overhead observed when using NeutronHP (with Thermal Scattering XS). Work in progress to figure out what causes this.
- Study on reaction multiplicities ongoing to try to explain differences between PLs.

Thanks for your attention

