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dedicated to Beppe Marmo
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Quantum dynamical maps and semigroups

A quantum dynamical map (or ‘quantum channel’) is a linear map

Q : B1(H) → B1(H) (1)

characterized by the following defining properties:

1. Q is positive, i.e., ρ̂ ≥ 0 ⇒ Q ρ̂ ≥ 0;

2. Q is trace-preserving, i.e., tr(Q ρ̂) = tr(ρ̂);

3. Q is completely positive, i.e., for every n, the map

Q⊗ Idn : B1(H)⊗ Cn×n → B1(H)⊗ Cn×n (2)

is positive.

The quantum dynamical maps form a semigroup DM(H), and a one-
parameter semigroup of (super-)operators

R+ ∋ t 7→ Qt ∈ DM(H), QtQs = Qt+s, (3)

is called a quantum dynamical semigroup (QDS). A QDS describes the
(reduced) dynamics of open quantum systems (Markovian approximation;
suitable regimes, e.g., weak coupling limit).
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Like any semigroup of operators, {Qt}t∈R+ is completely characterized by

its infinitesimal generator L:

L ρ̂ := lim
t↓0

t−1
(
Qt ρ̂ − ρ̂

)
. (ρ̂ ∈ Dom(L)) (4)

At least in the finite-dimensional case, one can show (Gorini-Kossakowski-

Sudarshan and Lindblad, 1976) that the general form of such a generator

is
L ρ̂ = −i

[
Ĥ, ρ̂

]
+ F ρ̂ −

1

2

((
F Î)ρ̂+ ρ̂

(
F Î

))
= −i

[
Ĥ, ρ̂

]
+

N2−1∑
k=1

γk

(
L̂k ρ̂ L̂

∗
k −

1

2

(
L̂∗
kL̂k ρ̂+ ρ̂ L̂∗

kL̂k

))
, (5)

where F is a completely positive map, γ1, . . . , γN2−1 are non-negative real

numbers, Ĥ is a selfadjoint operator (Hamiltonian) and L̂1, . . . , L̂N2−1
are

operators that form an orthonormal basis, w.r.t. the Hilbert-Schmidt prod-

uct, in the orthogonal complement of the space generated by the identity.

More generally, Ĥ and L̂1, L̂2, . . . will be bounded (norm-continuous QDSs)

— or even unbounded — operators.
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Twirling semigroups and generalizations

Given a locally compact group G, we consider the semigroup PM(G) of
all probability measures on G, with respect to convolution. Recall that
for µ, ν ∈ PM(G) the convolution of µ with ν is the probability measure
µ ⋆ ν determined by∫

G
dµ ⋆ ν(g) f(g) =

∫
G
dµ(g)

∫
G
dν(h) f(gh), f ∈ Cc(G;R). (6)

By a (continuous) convolution semigroup of measures on G we mean a
subset {µt}t∈R+ of PM(G) such that the map R+ ∋ t 7→ µt ∈ PM(G) is a
homomorphism of semigroups,

µt ⋆ µs = µt+s, t, s ≥ 0, (7)

and

lim
t↓0

µt = δ, δ ≡ δe (Dirac measure at the identity e ∈ G). (8)

A further ingredient is a suitable representation of G.
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Let U be a projective representation of G in a Hilbert space H. We can
define the isometric representation

U ∨U(g) ρ̂ := U(g) ρ̂ U(g)∗, g ∈ G, ρ̂ ∈ B1(H). (9)

If ρ̂ is a state, this is the canonical symmetry action of G on ρ̂.
Given a convolution semigroup {µt}t∈R+ on G, we set

St ρ̂ :=
∫
G
dµt(g)

(
U ∨U(g) ρ̂

)
, ρ̂ ∈ B1(H), t ≥ 0 . (10)

The family of maps {St}t∈R+ is a quantum dynamical semigroup, a so-
called twirling semigroup.

More generally, let V be a (weakly continuous) representation of G in a
Banach space J . Setting

µt[V]Φ :=
∫
G
(V(g)Φ) dµt(g), Φ ∈ J , (11)

we obtain a semigroup of operators {µt[V]}t∈R+, a randomly generated
semigroup (RGS). A further generalization can be obtained replacing the
convolution semigroup {µt}t∈R+ with a suitable family of signed measures.
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The generators of twirling semigroups

How are the generators of twirling semigroups characterized within the

Gorini-Kossakowski-Lindblad-Sudarshan classification?

Suppose, for the sake of simplicity, that H is finite-dimensional. A quan-

tum dynamical map U : B(H) ≡ B1(H) → B(H) is said to be a random

unitary map if it is a convex combination of unitary transformations:

U ρ̂ =
N∑
k=1

pkVk ρ̂ V
∗
k . (12)

Observe that the random unitary maps acting in B(H) form a semigroup

DMru(H) contained in the semigroup of quantum dynamical maps DM(H).

Every twirling (super)operator

B(H) ∋ ρ̂ 7→
∫
G
dµ(g)

(
U(g) ρ̂ U(g)∗

)
(13)

is a random unitary map. Thus, every twirling semigroup is a random uni-

tary semigroup (a semigroup of ops. consisting of random unitary maps).
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Theorem 1 Let {Qt : B(H) → B(H)}t∈R+ be a quantum dynamical semi-
group. Then, the following facts are equivalent.

1. {Qt}t∈R+ is a twirling semigroup.

2. {Qt}t∈R+ is a random unitary semigroup.

3. The infinitesimal generator L of the quantum dynamical semigroup
{Qt}t∈R+ is of the form

L ρ̂ = −i
[
Ĥ, ρ̂

]
+

N2−1∑
k=1

γk

(
L̂kρ̂ L̂k −

1

2

(
L̂2
k ρ̂+ ρ̂ L̂2

k

))
+ γ0

(
U − Id

)
ρ̂, (14)

where Ĥ is a trace-less selfadjoint operator, L̂1, . . . , L̂N2−1
are trace-less

selfadjoint operators such that⟨
L̂j , L̂k

⟩
HS = δjk, j, k = 1, . . . , N2 − 1, (15)

U is a random unitary map acting in B(H) and γ0, . . . , γN2−1 are non-
negative numbers (compare with the G-K-L-S form of a generator).

Note: clearly the specific form of L depends on the details of the pair
(U, {µt}t∈R+) giving rise to {Qt}t∈R+ (Lévy-Kintchine formula).
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Classical-quantum semigroups
In classical (statistical) mechanics, states are probability measures on
phase space, and the expectation value of an observable f(q, p) in the
state µ is given by

⟨f⟩µ =
∫
R×R

f(q, p) dµ(q, p) , f ∈ C0(R× R) . (16)

It is often convenient to replace a probability measure µ with its (say,
symplectic) Fourier transform

χ(q, p) ≡ µ̃(q, p) =
1

2π

∫
R×R

ei(qp
′−pq′) dµ(q′, p′) , (17)

which is an ordinary function. By Bochner’s theorem, the convex set
formed by such functions coincides with the convex set of normalized,
continuous positive definite functions; i.e., for every finite set

z1 ≡ (q1, p1), . . . , zn ≡ (qn, pn)

we have ∑
j,k

χ(zj − zk)cjc
∗
k ≥ 0 , χ(0) = 1 . (18)

A similar picture is possible in the quantum setting as well.
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Indeed, in the Weyl-Wigner-Groenewold-Moyal phase space formulation of

quantum mechanics we have:

ρ̂ψ = |ψ⟩⟨ψ| 7→ ϱψ(q, p) :=
1

2π

∫
R
e−ipxψ

(
q −

x

2

)∗
ψ

(
q+

x

2

)
dx , (19)

⟨Â⟩ρ̂ = tr(Â ρ̂) =
∫
R×R

A(q, p) ϱ(q, p) dq dp . (20)

Is there any intrinsic characterization of Wigner quasi-probability distri-

butions, as in the classical case? By a ‘quantum version’ of Bochner’s

theorem (Kastler 1965, Loupias and Miracle-Sole 1966), the Wigner

functions ϱ(q, p) are precisely those continuous functions on phase space

satisfying∑
j,k

ϱ̃(zj − zk)e
iω(zk,zj )/2 cjc

∗
k ≥ 0 , ϱ̃(0) = 1 , (~ = 1) (21)

for every finite set z1 ≡ (q1, p1), . . . , zn ≡ (qn, pn) and numbers c1, . . . , cn.

Here, Q ≡ ϱ̃ = Fspϱ is a normalized quantum positive definite function and

ω is the standard symplectic form.
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Recall that, endowed with convolution, the convex set PM(G) of all prob-
ability measures on G = R × R is a semigroup, with identity δe. The
convolution of probability measures corresponds — via the FT — to the
point-wise product of characteristic functions.
Hence, the point-wise multiplication (χ1, χ2) 7→ χ1χ2 of two continuous
(classical) positive definite functions on G gives rise to a continuous (clas-
sical) positive definite function.
What about the point-wise product of a (continuous) classical positive
definite function by a (continuous) quantum positive definite function?
It turns out that the point-wise product χQ of a positive definite function
χ by a quantum positive definite function Q is still a quantum positive
definite function. In particular, it belongs to the convex set of quantum
characteristic functions if χ and Q are normalized.

By linear superpositions, one can extend in a natural way the convex cone
of quantum positive definite functions on R×R to a complex vector space
T which, endowed with a suitable norm, becomes a (separable) Banach
space. It turns out that T can be regarded as a dense linear span in
L2(R×R). A semigroup of operators in the space T is defined as follows.
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Consider a multiplication semigroup of positive definite functions

{χt : R× R → C}t∈R+, χtχs = χt+s, t, s ≥ 0, χ0 ≡ 1 (22)

(continuous w.r.t. the the topology of uniform convergence on compact
sets). Such semigroups can be classified. As χt is a bounded continuous
function, we can define a bounded operator Ĉt in L2(R× R):(

Ĉtf
)
(q, p) := χt(q, p)f(q, p), f ∈ L2(R× R), t ≥ 0. (23)

The set {Ĉt}t∈R+ is a semigroup of operators:

1. Ĉt Ĉs = Ĉt+s, t, s ≥ 0;

2. Ĉ0 = Id;

3. limt↓0 ∥Ĉtf − f∥ = 0, ∀f ∈ L2(R× R).
Since the product χQ of a positive definite function χ by a quantum
positive definite function Q is still a function of the latter type, setting(

CtQ
)
(q, p) := χt(q, p)Q(q, p), Q ∈ T ⊂ L2(R× R), (24)

we obtain a further semigroup of operators {Ct}t∈R+ acting in the Banach
space T , a classical-quantum semigroup.
What is the relation with the twirling semigroups?
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Tomographic semigroups

Consider the map Tm : G→ U(L2(G)) defined by(
Tm(g)f

)
(h) := ∆(g)

1
2 m̆(g, h)f(g−1hg), f ∈ L2(G), (25)

where ∆ is the modular function and, given a multiplier m : G×G→ T,
the function m̆ : G×G→ T is defined as follows:

m̆(g, h) := m(g, g−1h)∗m(g−1h, g), ∀g, h ∈ G. (26)

Tm is a (continuous) unitary representation. Given a convolution semi-
group {µt}t∈R+ on G, we define the RGS associated with (Tm, {µt}t∈R+):

Tm
t f =

∫
G
Tm(g)f dµt(g), ∀f ∈ L2(G). (27)

What is the physical meaning? If there is a square integrable projective
representation U : G→ U(H) — with multiplier m — it turns out that the
semigroup of operators {Tm

t }t∈R+ is the twirling semigroup associated with
the pair (U, {µt}t∈R+), but expressed in terms of the generalized Wigner
functions (quantum tomograms) associated with U . Thus, it is natural
to call {Tm

t }t∈R+ the tomographic semigroup associated with m.
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More precisely, these tomograms are functions living in the space L2(G).
In the case where the group G is unimodular, they are defined by

ϱ̃(g) = tr(U(g)∗ ρ̂), ρ̂ ∈ B1(H), in particular, a quantum state. (28)

The map ρ̂ 7→ ϱ̃ extends to an isometry (generalized Wigner map)

V : B2(H) → L2(G). (in general, Ran(V) ⊂ L2(G)) (29)

The tomograms form a subspace T (V) of L2(G), which is stable under
the action of the representation Tm and of the semigroup of operators
{Tm

t }t∈R+. The restrictions to T (V) of Tm and of {Tm
t }t∈R+ are the images

through the dequantization map

B1(H) ∋ ρ̂ 7→ ϱ̃ ∈ T (V) ⊂ L2(G) (30)

of the representation U ∨U — U ∨U(g)ρ̂ := U(g) ρ̂ U(g)∗ — and of the
twirling semigroup associated with the pair (U, {µt}t∈R+), respectively.

Example: If G is the group of translations on phase space — the additive
group R× R — and U is the projective representation (Weyl system)

U(q, p) := exp(i(pq̂ − qp̂)) , q, p ∈ R, (31)

we get precisely a classical-quantum semigroup.
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Generalized twirling semigroups

The role of complete positivity — a notion introduced by Stinespring
(1955) — in the theory of open quantum systems has been recognized by
Kraus (1971), Accardi (1976) and Lindblad (1976). Its justification on
the physical ground is still controversial; see, e.g., the work of Shaji and
Sudarshan (2005). Let us then relax the complete positivity, and let us
consider a generalization of the twirling semigroups.

Let {Dt : B(H) ≡ B1(H) → B(H)}t∈R+ be a family of linear maps. {Dt}t∈R+

is a semigroup of unital, trace-preserving positive maps if and only if

Dt ρ̂ =
∫
G
U(g) ρ̂ U(g)∗ dςt(g), (32)

where (U, {ςt}t∈R+) is a pair formed by a continuous unitary representation
U : G → U(H) of a locally compact group G and by a family {ςt}t∈R+ of
finite, signed Borel measures on G satisfying some technical conditions
conditions (M1)–(M3) below.
(These can regarded as the defining conditions of a generalized twirling
semigroup.)
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(M1) ς0 = δ (Dirac measure at the identity of G) and ςt(G) = 1, for all
t ∈ R+

∗ ;

(M2) for some (hence, for every) orthonormal basis Ψ ≡ {ψk}Nk=1 in H,

lim
t↓0

∫
G
vjklm(Ψ; g) dςt(g) = δjkδlm (33)

and∫
G
vjklm(Ψ; g) d(ςs ⋆ ςt)(g) =

∫
G
vjklm(Ψ; g) dςs+t(g), ∀s, t ∈ R+

∗ , (34)

where

vjklm(Ψ; g) := ⟨ψj, U(g)ψk⟩⟨U(g)ψl, ψm⟩;

(M3) for every orthonormal basis Ψ ≡ {ψk}Nk=1 in H,

lim
t↓0

t−1
∫
G
vjkkj(Ψ; g) dςt(g) ≥ 0, j ̸= k. (35)

(M1) + (M2) ⇒ {Dt}t∈R+ is a semigroup of unital trace-preserving maps

(M1) + (M2) + (M3) ⇔ {Dt}t∈R+ is a semigroup of unital, trace-preserving
positive maps
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What about the associated generators? Let us consider a qubit system.

Theorem 2 For dim(H) = 2, the general form of the generator of a
generalized twirling semigroup is given by

L ρ̂ = −i
3∑

j=1

hj
[
Ŝj, ρ̂

]
+

3∑
j,k=1

κjk
(
Ŝj ρ̂ Ŝk −

1

2

(
Ŝj Ŝk ρ̂+ ρ̂ Ŝj Ŝk

))
, (36)

where h1, h2, h3 ∈ R, the 3×3 matrix K := (κjk) is such that κjk = κkj ∈ R
and — setting

κ1 ≡ κ22+κ33, κ2 ≡ κ11+κ33, κ3 ≡ κ11+κ22, a ≡ −κ23, b ≡ −κ13, c ≡ −κ12

— the associated symmetric real matrix

P :=

κ1 c b
c κ2 a
b a κ3

 (37)

is positive semidefinite.
The semigroup of linear maps associated with L is, in particular, com-
pletely positive if and only if the symmetric real matrix K is positive
semidefinite.
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Conclusions and perspectives:

• An interesting class of quantum dynamical semigroups stems from the
marriage between a group representation and a convolution semigroup
of measures on that group: the twirling semigroups. This class arises
as a suitable choice of the (type of) representation from a larger class
of semigroups of operators: the randomly generated semigroups.

• Classical examples of physical systems described by twirling semigroups
are: a finite-dim. system coupled to an infinite free boson bath whose
time correlation functions are Gaussian; a finite-dim. system in the
limit of singular coupling to a reservoir at infinite temperature (Frige-
rio, Gorini, Kossakowski, 1976).

• The class of twirling semigroups coincides with the class of random
unitary semigroups, i.e., those quantum dynamical semigroups consist-
ing of random unitary maps. Gregoratti and Werner (2004) have
given a characterization of this class of maps as the only quantum
channels enjoying the property of being perfectly corrigible by using,
as the only side-resource, classical information form the environment.
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• A natural problem is to express a twirling semigroup in terms of ‘phase
space functions’. Undertaking a group-theoretical approach, this route
leads to the definition of the so-called tomographic semigroups.

• In the case where the relevant group is the group of translations on
(standard) phase space, one finds the classical-quantum semigroups.

• Interestingly, exploiting the notions of (classical) positive definite and
of quantum positive definite function, and their properties, one can
find the classical-quantum semigroups following a different route.

• In finite dimensions, the twirling semigroups are unital. (Not neces-
sarily completely positive) unital dynamical semigroups correspond to
the class of generalized twirling semigroups, associated with a suitable
class of families of signed measures. The standard twirling semigroups
are obtained by taking, in particular, convolution semigroups of prob-
ability measures.

• Whereas convolution semigroups of probability measures (on Lie groups)
have been extensively studied, these more general families of signed
measures will deserve further investigation.
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Thank you for your attention

and

long life to Beppe!


