Nonlinear equations from linear ones

Marek Kuś
Center for Theoretical Physics, PAS, Warsaw, Poland

in collaboration with Szymon Charzyński, Department of Mathematical Methods in Physics, University of Warsaw and Jan Gutt, CTP PAS

Geometria è Fisica, a Geometrical Vision of Physics, July 11, 2016

Matrix equations

- G - a n-dimensional Lie group,
- \mathfrak{g}-its Lie algebra.
- Equation

$$
\frac{d}{d t} K(t)=M(t) K(t), \quad K(0)=I
$$

where

- $\mathbb{R} \ni t \mapsto M(t) \in \mathfrak{g}$ - a given curve in \mathfrak{g},
- $K(t)$ - a curve in G, which is a solution to the equation.

Motivation

In quantum mechanical applications the Schrödinger equation for an n-level system governed by a time-dependent Hamiltonian reads:

$$
\begin{equation*}
i \frac{d \psi}{d t}=H(t) \psi \tag{1}
\end{equation*}
$$

Writing the solution of with an initial condition $\psi(0)$ as
$\psi(t)=U(t) \psi(0)$ and substituting $H(t)=i M(t)$, we obtain:

$$
\frac{d}{d t} U(t)=M(t) U(t), \quad U(0)=I
$$

where $U(t) \in G=U(n)$.

This equations can be also treated as a classical control system on the Lie group G.

Wei-Norman method

- G - n-dimensional Lie group
- \mathfrak{g} - its Lie algebra (simple, complex)
- $\mathbb{R} \ni t \mapsto M(t) \in \mathfrak{g}$ - a curve in \mathfrak{g}.
- $K(t)$ - a curve in G given by the differential equation:

$$
\frac{d}{d t} K(t)=M(t) K(t), \quad K(0)=I
$$

- $X_{k}, k=1, \ldots, n$ is some basis in \mathfrak{g}, then:

$$
M(t)=\sum_{k=1}^{n} a_{k}(t) X_{k}
$$

- We look for the solution $K(t)$ in the form

$$
K(t)=\prod_{k=1}^{n} \exp \left(u_{k}(t) X_{k}\right)
$$

Wei-Norman method

- Differentiating $\left({ }^{\prime}=d / d t\right)$ and commuting...

$$
K^{\prime}=\sum_{l=1}^{n} u_{l}^{\prime} \prod_{k<l} \operatorname{Ad}_{\exp \left(u_{k} X_{k}\right)} X_{l} K
$$

where Ad is the adjoint action of G on \mathfrak{g},

$$
\operatorname{Ad}_{g} X:=g X^{-1}, \quad g \in G, \quad X \in \mathfrak{g} .
$$

- Using

$$
\operatorname{Ad}_{\exp (f \cdot X)}=\exp \left(f \cdot \operatorname{ad}_{X}\right)
$$

where $\operatorname{ad}_{X}=[X, \cdot]$ is the adjoint action of \mathfrak{g} on itself, we obtain:

- ... we get

$$
K^{\prime}=\sum_{l=1}^{n} u_{l}^{\prime} \prod_{k<l} \exp \left(u_{k} \operatorname{ad}_{x_{k}}\right) X_{l} K .
$$

Wei-Norman method

- Comparing

$$
\frac{d}{d t} K(t)=\underbrace{\sum_{l=1}^{n} u_{l}^{\prime} \prod_{k<l} \exp \left(u_{k} \operatorname{ad}_{X_{k}}\right) \cdot X_{l}}_{M(t)=\sum_{k=1}^{n} a_{k}(t) X_{k}} K(t)
$$

- ... we obtain equations for the (unknown) coefficients u_{j}

$$
\mathbf{a}=A \mathbf{u}^{\prime}, \quad \mathbf{u}^{\prime}=A^{-1} \mathbf{a}
$$

where

$$
A_{j l}=A_{j l}^{(l)}, \quad A^{(l)}=\prod_{k<l} \exp \left(u_{k} \operatorname{ad}_{X_{k}}\right)
$$

It can be shown, that A is invertible, at least locally

Choice of basis

- A depends on the choice of (an ordered) basis in \mathfrak{g}
- Example: $\mathfrak{s l}(2, \mathbb{C})$ (J. Cariñena, J. Grabowski, G. Marmo, Lie-Scheffers Systems: A Geometric AApproach) for

$$
X_{1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad X_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad X_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

we get

$$
u_{1}^{\prime}=a_{1} e^{-u_{2}}-a_{3} u_{1}^{2} e^{u_{2}}, \quad u_{2}^{\prime}=a_{2}+2 a_{3} u_{1} e^{u_{2}}, \quad u_{3}^{\prime}=a_{3} \mathrm{e}^{u_{2}}
$$

whereas, for

$$
X_{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad X_{2}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad X_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

a much 'nicer' Riccati system

$$
u_{1}^{\prime}=a_{1}+a_{2} u_{1}+a_{3} u_{1}^{2}, \quad u_{2}^{\prime}=a_{2}+2 a_{3} u_{1}, \quad u_{3}^{\prime}=a_{3} \mathrm{e}^{u_{2}}
$$

- How to find such a 'canonical' ordered basis for an arbitrary Lie group?

Example: spin in rotating magnetic field

- Time dependent Hamiltonian:

$$
H(t)=-\frac{B \cos (\omega t)}{2} \sigma_{x}-\frac{B \sin (\omega t)}{2} \sigma_{y}=-\frac{B}{2}\left[\begin{array}{cc}
0 & \exp (-i \omega t) \\
\exp (i \omega t) & 0
\end{array}\right], \quad U^{\prime}=-i H U
$$

- In the above 'nice' basis the equations read:

$$
u_{1}^{\prime}(t)=\frac{i B}{2}\left(\mathrm{e}^{-i \omega t}+\mathrm{e}^{i \omega t}\left(u_{1}(t)\right)^{2}\right), \quad u_{2}^{\prime}(t)=i B \mathrm{e}^{i \omega t} u_{1}(t), \quad u_{3}^{\prime}(t)=\frac{i B}{2} \mathrm{e}^{i \omega t} \mathrm{e}^{u_{2}(t)}
$$

- ... and are easily solved

$$
U=\left[\begin{array}{cc}
\left(\cos \left(\frac{\Omega t}{2}\right)+\frac{i \sin \left(\frac{\Omega t}{2}\right) \omega}{\Omega}\right) \mathrm{e}^{-i \frac{\omega t}{2}} & -\frac{B}{2 \Omega}\left(\mathrm{e}^{-i t \Omega}-1\right) \mathrm{e}^{i \frac{\Omega-\omega}{2} t} \\
\frac{B}{2 \Omega}\left(\mathrm{e}^{i t \Omega}-1\right) \mathrm{e}^{-i \frac{\Omega-\omega}{2} t} & \left(\cos \left(\frac{\Omega t}{2}\right)-\frac{i \sin \left(\frac{\Omega t}{2}\right) \omega}{\Omega}\right) \mathrm{e}^{i \frac{\omega t}{2}}
\end{array}\right], \quad \Omega=\sqrt{B^{2}+\omega^{2}}
$$

Example: $\mathfrak{s l}(3, \mathbb{C})$

1. A system of two coupled Riccati equations:

$$
\begin{aligned}
& u_{1}^{\prime}=a_{1}+\left(2 a_{5}-a_{4}\right) u_{1}+a_{6} u_{2}-a_{8} u_{1}^{2}-a_{7} u_{1} u_{2}, \\
& u_{2}^{\prime}=a_{2}+a_{3} u_{1}+\left(a_{4}+a_{5}\right) u_{2}-a_{8} u_{1} u_{2}-a_{7} u_{2}^{2},
\end{aligned}
$$

2. A scalar Riccati equation for u_{3} :

$$
u_{3}^{\prime}=\left(a_{3}-a_{8} u_{2}\right)+\left(2 a_{4}-a_{5}+a_{8} u_{1}-a_{7} u_{2}\right) u_{3}+\left(a_{7} u_{1}-a_{6}\right) u_{3}^{2},
$$

3. The rest

$$
\begin{aligned}
u_{4}^{\prime} & =a_{4}-a_{6} u_{3}+a_{7}\left(u_{1} u_{3}-u_{2}\right) \\
u_{5}^{\prime} & =a_{5}-a_{8} u_{1}-a_{7} u_{2} \\
u_{6}^{\prime} & =\left(a_{6}-a_{7} u_{1}\right) \mathrm{e}^{2 u_{4}-u_{5}}, \\
u_{7}^{\prime} & =\left(a_{7} u_{3}+a_{8}\right) u_{6} \mathrm{e}^{-u_{4}+2 u_{5}}+a_{7} \mathrm{e}^{u_{4}+u_{5}}, \\
u_{8}^{\prime} & =\left(a_{8}+a_{7} u_{3}\right) \mathrm{e}^{-u_{4}+2 u_{5}},
\end{aligned}
$$

which are solved by simple consecutive integrations, once solutions of the Riccati equations are known.

Arbitrary simple Lie algebra \mathfrak{g}

- The construction of a 'canonical' basis can be done for all simple algebras (classical and exceptional) except the exceptional ones G_{2}, F_{4}, and E_{8}
- The resulting Wei-Norman equations split into several blocks of coupled Riccati and linear equations and 'trivial' ones (solvable by consecutive integrations)
- The construction hinges on two things
- A decomposition of a simple Lie algebra into a sum of commutative algebras (can be done for all simple Lie algebras)
- A particular property of the adjoint endomorhism (in all simple Lie algebras, except G_{2}, F_{4}, and E_{8})

Decomposition

- The Cartan decomposition

$$
\mathfrak{g}=\bigoplus_{\alpha \in \Phi_{-}} \mathfrak{g}_{\alpha} \oplus \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi_{+}} \mathfrak{g}_{\alpha}
$$

where \mathfrak{h} - the Cartan subalgebra, \mathfrak{g} - the root spaces,

$$
\mathfrak{g}_{\alpha}:=\{X \in \mathfrak{g}:[H, X]=\alpha(H) X \forall H \in \mathfrak{h}\}
$$

and $\Phi_{ \pm}$- the set of positive (negative) roots.

- Decomposition into commutative subalgebras

For a basis $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$ of the roots system consisting of positive simple roots

define
$\Phi_{k}:=\left\{\beta: \beta=\sum_{k}^{N} n_{i} \alpha_{i}, n_{i}>0\right\}, \quad \mathfrak{a}_{k}:=\operatorname{span}\left\{X_{\beta}: \beta \in \Phi_{k}\right\}, \quad \tilde{\mathfrak{a}}_{k}:=\operatorname{span}\left\{X_{-\beta}: \beta \in \Phi_{k}\right\}$
\mathfrak{a}_{k} are commutative and

$$
\mathfrak{g}=\bigoplus_{k=1}^{N} \mathfrak{a}_{k} \oplus \mathfrak{h} \oplus \bigoplus_{j=1}^{n} \tilde{\mathfrak{a}}_{j}
$$

Properties of the adjoint endomorphism

- \mathfrak{g} - a simple Lie algebra not equal to G_{2}, F_{4}, E_{8}
- $\alpha-$ a root and $X_{\alpha} \in \mathrm{g}$ - the corresponding root vector

Then

1. The image of $\left(\operatorname{ad}_{X_{\alpha}}\right)^{2}$ is equal to \mathfrak{g}_{α}
2. $\left(\mathrm{ad}_{X_{\alpha}}\right)^{3}=0$.

- Remark: for G_{2}, F_{4}, and E_{8}, there are roots for which $\left(\operatorname{ad}_{X_{\alpha}}\right)^{3} \neq 0$, but for all roots we have $\left(\mathrm{ad}_{X_{\alpha}}\right)^{5}=0$
- Corollary: For $X \in \mathfrak{a}_{k}$ or $X \in \widetilde{\mathfrak{a}}_{k}$ the matrix of $\exp \left(\operatorname{ad}_{X}\right)$ is a quadratic polynomial in ad_{X} and it is block diagonal with respect to the decomposition

$$
\mathfrak{g}=\mathfrak{a}_{1} \oplus \ldots \oplus \mathfrak{a}_{k-1} \oplus \underbrace{\left(\mathfrak{b}_{k} \oplus \mathfrak{h} \oplus \widetilde{\mathfrak{b}}_{k}\right)}_{\text {one block }} \oplus \widetilde{\mathfrak{a}}_{k-1} \oplus \ldots \oplus \tilde{\mathfrak{a}}_{1}
$$

- The equation $\mathbf{u}^{\prime}=A^{-1}$ a separates into blocks:
- matrix $N \times N$ Riccati equation for u_{1}, \ldots, u_{N}, corresponding to \mathfrak{a}_{1},
- matrix $(N-1) \times(N-1)$ Riccati equation for $u_{N+1}, \ldots, u_{2 N-1}$, corresponding to \mathfrak{a}_{2},

- scalar Riccati equation for $u_{N(N+1) / 2}$, corresponding to \mathfrak{a}_{N},
- the remaining equations which, are solved by consecutive integrations (provided the solutions of Riccati equations are known).

Summary

- An algorithm for reducing the highly non linear system of Wei-Norman equations

$$
\sum_{k=1}^{n} a_{k} X_{k}=\sum_{l=1}^{n} u_{l}^{\prime} \prod_{k<l} \exp \left(u_{k} \operatorname{ad}_{X_{k}}\right) \cdot X_{l},
$$

for the parameters u_{k} to a hierarchy of Riccati matrix equations and integrals.

- It is known that every system of Riccati equations is related to a Lie group action and solution of this system is equivalent to solution of the system of the form

$$
\frac{d}{d t} K(t)=M(t) K(t), \quad K(0)=I
$$

but not every system of this form is equivalent to Riccati equation system. Here we provide an explicit construction of a hierarchy of Riccati matrix equations equivalent to the equation on a Lie group for all classical groups (and the exceptional ones E_{6} and E_{7})

- For the exceptional algebras G_{2}, F_{4}, a nd E_{8} the nonlinearities are of 4-th order (c.f. the property of the adjoint endomorphism)

References

S. Charzyński and M. Kuś, Wei-Norman equations for a unitary evolution.
J. Phys. A: Math. Theor., 46, 265208, 2013.
S. Charzyński and M. Kuś,

Wei-Norman equations for classical groups.
Journal of Differential Equations, Vol. 259, Issue 4, 2015.

三-
J. Gutt, S. Charzyński and M. Kuś, Wei-Norman equations for classical groups via cominuscule induction, Differential Geometry and its Applications, Vol. 42, 2015.

