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Matrix equations

I G – a n-dimensional Lie group,

I g – its Lie algebra.

I Equation
d
dt

K(t) = M(t)K(t), K(0) = I,

where

I R 3 t 7→ M(t) ∈ g – a given curve in g,

I K(t) – a curve in G, which is a solution to the equation.



Motivation

In quantum mechanical applications the Schrödinger equation for an n-level system governed by a
time-dependent Hamiltonian reads:

i
dψ
dt

= H(t)ψ. (1)

Writing the solution of with an initial condition ψ(0) as

ψ(t) = U(t)ψ(0) and substituting H(t) = iM(t), we obtain:

d
dt

U(t) = M(t)U(t), U(0) = I,

where U(t) ∈ G = U(n).

This equations can be also treated as a classical control system on the Lie group G.



Wei-Norman method

I G – n-dimensional Lie group

I g – its Lie algebra (simple, complex)

I R 3 t 7→ M(t) ∈ g – a curve in g.

I K(t) – a curve in G given by the differential equation:

d
dt

K(t) = M(t)K(t), K(0) = I.

I Xk , k = 1, . . . , n is some basis in g, then:

M(t) =

n∑
k=1

ak(t)Xk.

I We look for the solution K(t) in the form

K(t) =
n∏

k=1

exp
(

uk(t)Xk
)
.



Wei-Norman method

I Differentiating (′ = d/dt) and commuting...

K′ =
n∑

l=1

u′l
∏
k<l

Adexp(ukXk)
Xl K,

where Ad is the adjoint action of G on g,

AdgX := gXg−1
, g ∈ G, X ∈ g.

I Using
Adexp(f ·X) = exp(f · adX),

where adX = [X, · ] is the adjoint action of g on itself, we obtain:

I ... we get

K′ =

n∑
l=1

u′l
∏
k<l

exp(ukadXk )Xl K.



Wei-Norman method

I Comparing

d
dt

K(t) =
n∑

l=1

u′l
∏
k<l

exp(ukadXk ) · Xl︸ ︷︷ ︸
M(t) =

n∑
k=1

ak(t)Xk

K(t)

I ... we obtain equations for the (unknown) coefficients uj

a = Au′, u′ = A−1a.

where

Ajl = A(l)
jl , A(l)

=
∏
k<l

exp(ukadXk )

It can be shown, that A is invertible, at least locally



Choice of basis

I A depends on the choice of (an ordered) basis in g

I Example: sl(2,C) (J. Cariñena, J. Grabowski, G. Marmo, Lie-Scheffers Systems: A
Geometric AApproach) for

X1 =
1
2

[
1 0
0 −1

]
, X2 =

[
0 1
0 0

]
, X3 =

[
0 0
1 0

]
,

we get
u′1 = a1e−u2 − a3u2

1eu2 , u′2 = a2 + 2a3u1eu2 , u′3 = a3eu2

whereas, for

X1 =

[
0 1
0 0

]
, X2 =

1
2

[
1 0
0 −1

]
, X3 =

[
0 0
1 0

]
,

a much ‘nicer’ Riccati system

u′1 = a1 + a2u1 + a3u2
1, u′2 = a2 + 2a3u1, u′3 = a3eu2

I How to find such a ‘canonical’ ordered basis for an arbitrary Lie group?



Example: spin in rotating magnetic field

I Time dependent Hamiltonian:

H(t) = −
B cos(ωt)

2
σx −

B sin(ωt)
2

σy = −
B
2

[
0 exp(−iωt)

exp(iωt) 0

]
, U′ = −iHU

I In the above ‘nice’ basis the equations read:

u′1 (t) =
iB
2

(
e−iω t

+ eiω t
(u1(t))2

)
, u′2 (t) = iBeiω tu1(t), u′3 (t) =

iB
2

eiω teu2(t)

I ... and are easily solved

U =



(
cos
(

Ωt
2

)
+

i sin
(

Ωt
2

)
ω

Ω

)
e−iωt

2 − B
2Ω

(
e−itΩ − 1

)
ei Ω−ω2 t

B
2Ω

(
eitΩ − 1

)
e−i Ω−ω2 t

(
cos
(

Ωt
2

)
−

i sin
(

Ωt
2

)
ω

Ω

)
eiωt

2

 , Ω =
√

B2 + ω2



Example: sl(3,C)

1. A system of two coupled Riccati equations:

u′1 = a1 + (2a5 − a4)u1 + a6u2 − a8u2
1 − a7u1u2,

u′2 = a2 + a3u1 + (a4 + a5)u2 − a8u1u2 − a7u2
2,

2. A scalar Riccati equation for u3:

u′3 = (a3 − a8u2) + (2a4 − a5 + a8u1 − a7u2) u3 + (a7u1 − a6) u2
3,

3. The rest

u′4 = a4 − a6u3 + a7 (u1u3 − u2)

u′5 = a5 − a8u1 − a7u2

u′6 = (a6 − a7u1) e2 u4−u5 ,

u′7 = (a7u3 + a8)u6e−u4+2 u5 + a7eu4+u5 ,

u′8 = (a8 + a7u3)e−u4+2 u5 ,

which are solved by simple consecutive integrations, once solutions of the Riccati equations
are known.



Arbitrary simple Lie algebra g

I The construction of a ‘canonical’ basis can be done for all simple algebras
(classical and exceptional) except the exceptional ones G2, F4, and E8

I The resulting Wei-Norman equations split into several blocks of coupled Riccati
and linear equations and ‘trivial’ ones (solvable by consecutive integrations)

I The construction hinges on two things

I A decomposition of a simple Lie algebra into a sum of commutative algebras (can be
done for all simple Lie algebras)

I A particular property of the adjoint endomorhism (in all simple Lie algebras, except G2,
F4, and E8)



Decomposition
I The Cartan decomposition

g =
⊕
α∈Φ−

gα ⊕ h⊕
⊕
α∈Φ+

gα

where h – the Cartan subalgebra, g – the root spaces,

gα := {X ∈ g : [H, X] = α(H)X ∀H ∈ h}.

and Φ± – the set of positive (negative) roots.
I Decomposition into commutative subalgebras

For a basis {α1, . . . , αN} of the roots system consisting of positive simple roots

AN
p p pc c c c cα1 α2 α3 αN−1 αN

CN
> p p pc c c c cα1 α2 α3 αN−1 αN

BN
>p p pc c c c cα1 α2 αN−2 αN−1 αN

DN

��PP

ccp p pc c c cα1 α2 αN−3
αN−2 αN−1

αN

define

Φk :=

{
β : β =

N∑
k

niαi, ni > 0

}
, ak := span {Xβ : β ∈ Φk} , ãk := span {X−β : β ∈ Φk}

ak are commutative and

g =

N⊕
k=1

ak ⊕ h⊕
n⊕

j=1

ãj



Properties of the adjoint endomorphism

I g – a simple Lie algebra not equal to G2, F4, E8

I α – a root and Xα ∈ g – the corresponding root vector
Then

1. The image of (adXα )2 is equal to gα
2. (adXα )3 = 0.

I Remark: for G2, F4, and E8, there are roots for which (adXα )3 6= 0, but for all roots we have
(adXα )5 = 0

I Corollary: For X ∈ ak or X ∈ ãk the matrix of exp(adX) is a quadratic polynomial in adX and it
is block diagonal with respect to the decomposition

g = a1 ⊕ . . .⊕ ak−1 ⊕
(
bk ⊕ h⊕ b̃k

)
︸ ︷︷ ︸

one block

⊕ãk−1 ⊕ . . .⊕ ã1.

I The equation u′ = A−1a separates into blocks:
I matrix N × N Riccati equation for u1, . . . , uN , corresponding to a1,
I matrix (N − 1)× (N − 1) Riccati equation for uN+1, . . . , u2N−1, corresponding to a2,

...
I scalar Riccati equation for uN(N+1)/2, corresponding to aN ,
I the remaining equations which, are solved by consecutive integrations (provided the

solutions of Riccati equations are known).



Summary

I An algorithm for reducing the highly non linear system of Wei-Norman equations

n∑
k=1

akXk =
n∑

l=1

u′l
∏
k<l

exp(ukadXk ) · Xl,

for the parameters uk to a hierarchy of Riccati matrix equations and integrals.

I It is known that every system of Riccati equations is related to a Lie group action
and solution of this system is equivalent to solution of the system of the form

d
dt

K(t) = M(t)K(t), K(0) = I,

but not every system of this form is equivalent to Riccati equation system. Here
we provide an explicit construction of a hierarchy of Riccati matrix equations
equivalent to the equation on a Lie group for all classical groups (and the
exceptional ones E6 and E7)

I For the exceptional algebras G2, F4,a nd E8 the nonlinearities are of 4-th order (c.f.
the property of the adjoint endomorphism)
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