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Standing on the shoulders of giants ...

Bernard of Chartres used to compare us to dwarfs perched on the
shoulders of giants. He pointed out that we see more and farther than our
predecessors, not because we have keener vision or greater height, but
because we are lifted up and borne aloft on their gigantic stature.
John of Salisbury, Metalogicon, 1159



Standing on the shoulders of giants ...
Dicebat Bernardus Carnotensis nos esse quasi nanos, gigantium humeris
insidentes, ut possimus plura eis et remotiora videre, non utique proprii
visus acumine, aut eminentia corporis, sed quia in altum subvenimur et
extollimur magnitudine gigantea.
Johannes Parvus, Metalogicon, 1159
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Any of us has one or more giants.

In my case one of most influencial
ones ....
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Geometric formulation of Quantum Mechanics

Geometric formulation of Quantum Mechanics

Let us consider a finite dimensional quantum system. Heinseberg
formalism will be defined on a C∗–algebra A, finite dimensional, and
therefore isomorphic to End(H), with the Frobenius norm
|A|2 = Tr(A†A) and an involution defined by the hermitian adjoint
A 7→ A†.

The set of hermitian operators is isomorphic to the Lie algebra of the
unitary group u(H) ∼ u(n). As we have a (non-degenerate) scalar
product

〈A|B〉 = Tr(AB); ∀A,B ∈ u(n)

we can identify u(n), iu(n) and u∗(n)

iu(n) 3 |A〉 7→ 〈A| ∈ u∗(n)



Definition of tensor fields
On u∗(n) we can consider two tensors

Rρ(dfA, dfB) = 〈ρ, (AB + BA)〉

and
Λρ(dfA, dfB) = 〈ρ, [A,B]〉

where fA(ρ) = ρ(A), fB(ρ) = ρ(B)

R is a symmetric tensor and Λ is the canonical Lie-Poisson tensor for the
unitary algebra. Thus, they allow us to consider the notion of gradient
YA = R(dfA, ·) and Hamiltonian XA = Λ(dfA, ·) vector fields
von Neumann equation can also be written as a Hamiltonian vector field
on u∗(n):

ρ̇ = −i [H, ρ]⇒ XH = Λ(dfH , ·)

Property
Hamiltonian vector fields preserve the Poisson and the symetric tensors

LXAR = 0 = LXA Λ; ∀A ∈ iu(n)



Lie-Jordan algebra
A vector space endowed with a Jordan algebra structure ◦ and a Lie
structure [·, ·], such that ∀a, b, c ∈ L:

I Leibnitz [a, b ◦ c] = [a, b] ◦ c + b ◦ [a, c]
I (a ◦ b) ◦ c − a ◦ (b ◦ c) = ~2[b, [c, a]] where ~ ∈ R.

Lie-Jordan Banach (LJB) algebras
A Lie-Jordan algebra L endowed with a norm ‖ · ‖ such that L is
complete and satisfies

I ‖a ◦ b‖ ≤ ‖a‖‖b‖
I ‖[a, b]‖ ≤ |~|−1‖a‖‖b‖
I ‖a2‖ = ‖a‖2

I ‖a2‖ ≤ ‖a2 + b2‖
for any a, b ∈ L.

Theorem
(u∗(n),R,Λ) with the Frobenius norm defines a LJB algebra.



The space of physical states

The space of physical states

Definition
The set of density matrices D(H) of a system corrresponds to the
subset of u∗(H) defined by the convex combinations of rank-one
projectors. Analogously, ρ ∈ u∗(H) is a density matrix iff

Trρ = 1, ρ ≥ 0.

The subset of pure states corresponds to the submanifold D1(H) of
rank-one projectors



We adapt the notation from Grabowski, Kus and Marmo and denote by
DΛ and DR the generalized distributions on O∗ of Hamiltonian and
gradient vector fields, respectively.

Proposition GKM
The distribution D1 = DΛ + DR on O∗ is involutive and can be integrated
to a generalized foliation F1, whose leaves correspond to the orbits of the
action of the general linear group GL(n,C) on O∗, n = dimH, defined by
(T , ξ) 7→ T ξT ∗.



Proposition
Let P(A) denote the set of real positive linear functionals ζ : A → C, i.e.
such that

ζ(a∗) = ζ(a), ζ(a∗a) ≥ 0, ∀a ∈ A. (1)

The set P(A) is a subset of O∗. Furthermore, it is a stratified manifold,

P(A) =
n⋃

k=0
Pk(A), (2)

where the stratum P(A)k is the set of rank k operators in P(A). Each
stratum P(A)k is a leaf of the foliation F1 corresponding to the joint
distribution, union of Hamiltonian and gradient vector fields.

Proposition
The set of states D(A) is a stratified manifold,

D(A) =
n⋃

k=1
D(A)k

, where D(A)k(A) = P(A)k ⋂{ξ ∈ O∗|ξ(I) = 1}.

(3)



Some considerations:

I Let us consider the foliation of O∗ defined by the gradient vector
field YI . As YI ∈ D1, any leaf that intersects P(A) belongs
completely to P(A).

I Notice that the functional 0 ∈ P(A) is a fixed point of YI . Removing
it, we obtain a regular foliation by YI of P0(A) := P(A)− {0}.

I We can thus define the corresponding quotient manifold identifying
points in the same leaf; two points ζ, ζ ′ are equivalent if ζ = cζ ′,
with c > 0. The set of states D(A) is the section of this fibration
defined by the elements of trace equal to one.

We are interested in the characterization of geometrical objects in D(A)
as objects in P(A) that are projectable with respect to the fibration

πP(ζ) = 1
fI(ζ) ζ, ζ ∈ P0(A),
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Definition
Let us consider a set of expectation value functions defined, from the
linear ones, in the form

eA(ρ) := π∗P(fa|D(A))(ζ) = fa(ζ)
fI(ζ) , ζ ∈ P0(A), a ∈ O.

Theorem
We obtain thus two tensors on D(H) as

ΛD(H)(deA, deB) = e[A,B]

RD(H)(deA, deB) = e[A,B]+ − eAeB = Cov(A,B)

RD captures the difference between the pointwise and the Jordan
product.
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Geometric characterization of the KL equation

Geometric characterization of the KL equation

GKS and Lindblad determined, in 1976, the form of the infinitesimal
generator of a markovian dynamics on the set of states.

dρ(t)
dt = −i [H, ρ(t)] + 1

2

n2∑
j=1

([Vjρ(t),V †j ] + [Vj , ρ(t)V †j ] =

− i [H, ρ(t)]− 1
2

n2∑
j=1

([V †j Vj , ρ(t)]+ +
n2∑

j=1
Vjρ(t)V †j

This equation defines a vector field ZL on D(H):

dρ(t)
dt = ZL(ρ).



We can characterize the different terms from a geometrical point of view
and write

ZL = XH + YJ + K

where
I XH is a Hamiltonian vector field with respect to the Poisson tensor

ΛD(H)
I YJ , is the gradient vector field associated with the function

J =
∑n2

j=1 V †j Vj by the symmetric tensor RD(H).
I K is the vector field associated to the action of the Kraus operators

K (ρ) =
n2∑

j=1
VjρV †j



Dynamics on the space of tensors

Dynamics on the space of tensors

We can encode the evolution in a transformation of the algebraic
structures of our LJB system. Therefore we shall consider the following
equations

d
dt Λ(t) = LZL Λ(t); Λ(0) = ΛD(H)

d
dt R(t) = LZLR(t); R(0) = RD(H)

The system we are interested in is the limit:

R∞ = lim
t→∞

R(t) = lim
t→∞

e−tLZL RD(H); Λ∞ = lim
t→∞

Λ(t) = lim
t→∞

e−tLZL ΛD(H)

Question
Does (R∞,Λ∞) define a LJB algebra?



Dynamics on the space of tensors

Example: 2-level systems
Let us consider the phase damping of a qubit, given by the following
Kossakowski-Lindblad operator

Lρ = −γ(ρ− σ3ρσ3).
The vector field ZL associated to this operator is:

ZL = −2γ
(

x1
∂

∂x1
+ x2

∂

∂x2

)
.

By computing the Lie derivatives with respect to this vector field of ΛD
and RD, we obtain the coordinate expressions of the families ΛD,t and
RD,t :

ΛD,t =e−4γtx3
∂

∂x1
∧ ∂

∂x2
+ x1

∂

∂x2
∧ ∂

∂x3
+ x2

∂

∂x3
∧ ∂

∂x1
,

RD,t =e−4γt
(
∂

∂x1
⊗ ∂

∂x1
+ ∂

∂x2
⊗ ∂

∂x2

)
+ ∂

∂x3
⊗ ∂

∂x3

−
3∑

j,k=1
xjxk∂xj ⊗ ∂xk .



In this case, the asymptotic limits t →∞ of the families do exist.

Proposition
The phase damping evolution of a qubit defines a contraction of the
Lie-Jordan algebra of functions on the space of states, determined by the
following products:

{x1, x3}∞ = −x2, {x2, x3}∞ = x1, {x1, x2}∞ = 0,
(x1, x1)∞ = (x2, x2)∞ = 0, (x3, x3)∞ = 1.

The Lie algebra (span(x1, x2, x3), {·, ·}∞) is isomorphic to the Euclidean
Lie algebra. The pair (span(x1, x2, x3, 1), (·, ·)∞) is a Jordan algebra. The
triple (span(x1, x2, x3, 1), (·, ·)∞, {·, ·}∞) is a Lie-Jordan algebra.



Dynamics on the space of tensors

Example: 3-level systems

The model of decoherence for massive particles is given by

L(ρ) = −γ[X , [X , ρ]],

where X is the position operator. This model can be discretized by
considering a finite number d = 3 of positions ~xm along a circle. The
positions are given by

~xm = (cosφm, sinφm), φm = 2πm
d , m,= 1, 2, . . . , d .

The operator L in the basis of eigenstates of the position operator takes
the form

L|m〉〈n| = −γ |~xm − ~xn| |m〉〈n| = −4γ sin2
(
π(m − n)

d

)
|m〉〈n|,

for m, n = 1, 2, . . . , d .



On the other hand, the pure decoherence of a d-level system is given by

L(ρ) = − 1
d

d−1∑
k=1

γk(ρ− UkρU∗k ), γk > 0, k = 1, 2, . . . , d − 1,

where Uk are the unitary operators given by

Uk =
d−1∑
l=1

λ−k(l−1)Pl , λ = e 2πi
d ,

and Pl are the 1-dimensional projectors |l〉〈l |.



The evolutions of a 3-level system by either the decoherence model of massive particles or the pure
decoherence model define a contraction of the Lie-Jordan algebra of functions. The Poisson and
the Jordan brackets of the contracted algebras are

{x1, x3}∞ = −x2, {x2, x3}∞ = x1,

{x4, x3}∞ = −
1
2

x5, {x5, x3}∞ =
1
2

x4, {x4, x8}∞ = −
√

3
2

x5, {x5, x8}∞ =
√

3
2

x4,

{x6, x3}∞ =
1
2

x7, {x7, x3}∞ = −
1
2

x6, {x6, x8}∞ = −
√

3
2

x7, {x7, x8}∞ =
√

3
2

x6,

(x3, x3)∞ =
2
3

+
1
√

3
x8, (x8, x8)∞ =

2
3
−

1
√

3
x8,

(x1, x8)∞ =
1
√

3
x1, (x2, x8)∞ =

1
√

3
x2, (x3, x8)∞ =

1
√

3
x3, (x4, x8)∞ = −

1
2
√

3
x4,

(x5, x8)∞ = −
1

2
√

3
x5, (x6, x8)∞ = −

1
2
√

3
x6, (x7, x8)∞ = −

1
2
√

3
x7,

(x4, x3)∞ =
1
2

x4, (x5, x3)∞ =
1
2

x5, (x6, x3)∞ = −
1
2

x6, (x7, x3)∞ = −
1
2

x7.

The triple (span(x1, . . . , x8, 1), (·, ·)∞, {·, ·}∞) is a Lie-Jordan algebra.



Question: When does the dynamics on the space of tensors converge?

Proposition (AFR)
Let us consider a 3-level system and assume a markovian dynamics with
Kraus operators Kj , j = 1, 2, ...n which are diagonalizable and with real
spectrum

Kj =

aj 0 0
0 bj 0
0 0 cj

 j = 1, 2, · · · , n.

Then, the corresponding Lindblad operator defines a convergent vector
field on the space of LJB algebras if and only if ~a = (a1, a2, · · · , an),
~b = (b1, b2, · · · , bn) and ~c = (c1, c2, · · · , cn) satisfy

‖~b −~a‖2 ≤ ‖~a − ~c‖2 + ‖~c − ~b‖2 ‖~a − ~c‖2 ≤ ‖~c − ~b‖2 + ‖~b −~a‖2

‖~c − ~b‖2 ≤ ‖~b −~a‖2 ≤ +‖~a − ~c‖2
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Equivalently, recalling the cosine theorem

cos ÂCB ≥ 0; cos ĈBA ≥ 0 cos B̂AC ≥ 0



Thanks, Beppe, for too many things to mention all
here.
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