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τ vs µ: where to look for new physics? 2-a

Theory view

• Flavour physics and new physics flavour-dependent generically
strongly linked with 3rd generation.

• Flavoured CP violation also associated to mixing and 3rd gener-
ation.

⇒ Expect large FCNC and CP violation

in Bs and τs
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τ vs µ: where to look for new physics? 2-b

Theory view

• Flavour physics and new physics flavour-dependent generically
strongly linked with 3rd generation.

• Flavoured CP violation also associated to mixing and 3rd gener-
ation.

⇒ Expect large FCNC and CP violation

in Bs and τs

Mixings and couplings much smaller in K and µ systems.

⇒ Assuming “similar” experimental sensitivity

3rd generation generically better
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Experimental View
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τ vs µ: where to look for new physics? 3-a

Experimental View

Kaon and µ physics

In the “SM”, small mixings and suppressed CP phases. But
new physics has to compete with “small” SM contributions

⇒ Complicate measurements, but possible...

Small NP reachable in a small background.
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τ vs µ: where to look for new physics? 3-b

Experimental View

Kaon and µ physics

In the “SM”, small mixings and suppressed CP phases. But
new physics has to compete with “small” SM contributions

⇒ Complicate measurements, but possible...

Small NP reachable in a small background.

B and τ physics

In the SM, larger FCNC and CP transitions. But NP has to compete
with this large contribution.

⇒ Is it more difficult to find NP here?
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Example I: εK and Bs mixing in SUSY

• Large contributions possible on d→ s transitions (εk):
Re{

(

δd
R

)

12
} ≤ 4 × 10−2, Im{

(

δd
R

)

12
} ≤ 3.2 × 10−3

However, things are difficult in B system...

• SM phase in Bs small: βS = 0.035, where the SM contribution to mixing:

MSM
12 ≃

α2
em

8M2
W sin2 θW

m2
t

M2
W

1
3f2

BBB (V ∗
tbVts)

2

while SUSY contribution:

MSUSY
12 ≃

α2
s

216M2
SUSY

f(x) 1
3f2

BBB

(

δd
LL

)2

12

• To have a large phase in mixing MBs

12 = MSM
12 + MSUSY

12 , we need,

1 ≃
MSUSY

12

MSM
12

=
α2

s sin2 θW

α2
em

M2
W

m2
t M

2
SUSY

8f(x)

216

(

δd
LL

)2

12

(V ∗
tbVts)

2 = 12.5×0.005×0.04×

(

δd
LL

)2

12

(0.008)
2

Thus, to have a large phase in Bs ⇒
(

δd
LL

)

12
≥ 0.16
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Example II: µ versus τ

• Present experimental sensitivity in µ LFV decays:
∝ BR(µ → eγ) = 10−11 (10−13)

while in τ LFV decays:
∝ BR(τ → µγ) = 10−8 (10−9)

• Generically we can write li → ljγ transitions:

BR(li → ljγ) ≃
(

MW

MNP

)4

× |
(

δl
)

ij
|2 × f(tanβ, µ . . .),

⇒ Interesting models determined by flavour structure:

|
(

δl
)

i3
/
(

δl
)

12
| >∼ 30 (100)
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Flavour symmetries in SUSY

• Very different elements in Yukawa matrices: yt ≃ 1, yu ≃ 10−5

• Expect couplings in a “fundamental” theory O(1)

• Small couplings generated at higher order or function of small vevs.

• Froggatt-Nielsen mechanism and flavour symmetry to understand

small Yukawa elements. Example: U(1)fl

×

×

ψL i

Q=1

ψc
R j

Q=0

Ψ

M

H

〈θ〉Q=-1

⇒ Yij =

(

〈θ〉
M

)

≪ 1
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• Flavour symmetry to understand

masses and mixings in Yukawas.

• Yukawas forbidden by symmetry,

generated only after Spontaneous

Symmetry Breaking.
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τ vs µ: where to look for new physics? 7-a

• Flavour symmetry to understand • Unbroken symmetry applies

masses and mixings in Yukawas. both to fermion and sfermions.

• Yukawas forbidden by symmetry, • Diagonal soft masses allowed

generated only after Spontaneous by symmetry.

Symmetry Breaking. • Nonuniversality in soft terms

proportional to symm. breaking.
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τ vs µ: where to look for new physics? 7-b

• Flavour symmetry to understand • Unbroken symmetry applies

masses and mixings in Yukawas. both to fermion and sfermions.

• Yukawas forbidden by symmetry, • Diagonal soft masses allowed

generated only after Spontaneous by symmetry.

Symmetry Breaking. • Nonuniversality in soft terms

proportional to symm. breaking.

⇓
We can relate the structure in Yukawa matrices to

the nonuniversality in Soft Breaking masses !!!
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Symmetric texture Asymmetric texture

• Non-Abelian flavour symmetries. • Abelian flavour symmetries.

Y d =







0 1.5 ε3 0.4 ε3

1.5 ε3 ε2 1.3 ε2

0.4 ε3 1.3 ε2 1






yb Y d =







ε4 ε3 ε3

ε3 ε2 ε2

ε 1 1






yb

• Universal sfermion masses in • In principle nonuniversal masses

in unbroken limit: in unbroken symmetry:

Lm2 = m2
0Φ

†Φ = m2
0 (φ1 φ2 φ3)

∗





φ1

φ2

φ3



 Lm2 = m2
1 φ∗

1φ1 + m2
2 φ∗

2φ2 + m2
3 φ∗

3φ3

• After symmetry breaking: • After symmetry breaking:

M2
D̃R

≃







1 + ε̄3 ε̄3 0

ε̄3 1 + ε̄2 ε̄2

0 ε̄2 1 + ε̄






m2

0 M2
D̃R

≃







1 ε̄ ε̄

ε̄ c b

ε̄ b a






m2

0

U. Valencia Oscar Vives



τ vs µ: where to look for new physics? 9

FCNC constraints

• Large offdiagonal entries in sfermion mass matrices generally
overproduce FCNC and CP Violation transitions

⇒ SUSY flavour problem

• Strong phenomenological bounds on Mass Insertions
(

δf
A

)

ij
=

(m2
f̃A

)ij

m2
f̃

• Very stringent bounds on d→ s transitions from ∆Mk and εk:
Re{

(

δd
R

)

12
} ≤ 4 × 10−2, Im{

(

δd
R

)

12
} ≤ 3.2 × 10−3

• Less stringent bounds from b→ d and b→ s transitions
Re{

(

δd
R

)

13
}, Im{

(

δd
R

)

13
} ≤ 0.1

(

⇒ Simple abelian models not allowed by ∆Mk and εk

)
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Abelian Flavour symmetry

• “Realistic” model with two Abelian groups U(1)1 × U(1)2

• Charges under (U(1)1, U(1)2):

Q1 ∼ (0, 1), Q2 ∼ (1, 0), Q3 ∼ (0, 0), φ1 ∼ (−1, 0) with 〈φ1〉/M = λ2
c

dc
1 ∼ (3,−1), dc

2 ∼ (1, 0), dc
3 ∼ (1, 0), (flavons)

uc
1 ∼ (0, 1), uc

2 ∼ (−1, 1), uc
3 ∼ (0, 0) φ2 ∼ (0,−1) with 〈φ2〉/M = λ3

c

• Yukawa couplings proportional to: Yij =

(

〈φ1〉
M

)(qi
1
+qj

1
) (

〈φ2〉
M

)(qi
2
+qj

2
)

Md,e = 〈H1〉 λ2







λ4 λ3 λ3

0 λ2 λ2

0 1 1






, Mu = 〈H2〉







λ6 0 λ3

λ5 λ3 λ2

λ3 0 1






.
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• Soft mass coupling φ†
iφi invariant under all symmetries

⇒ flavour diagonal soft masses allowed by flavour symmetry

• Diagonal masses required to be equal by phenomenology

• After symmetry breaking offdiagonal entries proportional to flavon vevs

M2
ij = m2

0

(

〈φ1〉
M

)|qi
1
−qj

1
| (

〈φ2〉
M

)|qi
2
−qj

2
|

M2
D̃R,ẼL

∼ m2
0







1 λ7 λ7

λ7 1 1

λ7 1 1






, M2

ŨR
∼ m2

0







1 λ2 λ3

λ2 1 λ5

λ3 λ5 1






,

M2
D̃L

= M2
ŨL

∼ m2
0







1 λ5 λ3

λ5 1 λ2

λ3 λ2 1






.
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SU(3) Flavour model

• Q, L ∼ 3 and dc, uc, ec ∼ 3; flavon fields: θ3, θ23 ∼ 3, θ3, θ23 ∼ 3

• Family Symmetry breaking: SU(3)
〈θ3〉
−→ SU(2)

〈θ23〉
−→ ∅

θ3, θ3 =





0
0
a3



 , θ23, θ23 =





0
b
b



with
(

a3

M

)

∼ O(1),
(

b
Mu

)

≃

(

b
Md

)2

= ε ∼ 0.05.

• Yukawa superpotential: WY = Hψiψ
c
j

[

θi
3θ

j
3

+ θi
23θ

j
23

(

θ3θ3
)

+ ǫiklθ23,kθ3,lθ
j
23

(

θ23θ3
)]

Y f =







0 a ε3 b ε3

a ε3 ε2 c ε2

b ε3 c ε2 1







|a3|
2

M2 ,
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• Soft mass coupling Φ†Φ invariant ⇒ common soft mass for the triplet

• Universality guaranteed in the exact symmetry limit.

• After symmetry breaking offdiagonal entries proportional to (complex) flavon vevs

M2
ij = m2

0

(

δij + 1
M2 [θi†

3 θj
3 + θ

i†

3 θ
j

3 + θi†
23θ

j
23 + θ

i†

23θ
j

23] +

1
M4 [(ǫiklθ3,kθ23,l)

†(ǫjmnθ3,mθ23,n) + (ǫiklθ
k
3θl

23)
†(ǫjmnθm

3 θn
23)] + . . .

)

M2
D̃R

SCKM
≃ 6 M2

1/2 1l +







1 + ε̄3 ε̄3 ε̄3

ε̄3 1 + ε̄2 ε̄2

ε̄3 ε̄2 1 + ε̄






m2

0

(with ε̄ ≃ 0.15,ε ≃ 0.05 )
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• Soft mass coupling Φ†Φ invariant ⇒ common soft mass for the triplet

• Universality guaranteed in the exact symmetry limit.

• After symmetry breaking offdiagonal entries proportional to (complex) flavon vevs

M2
ij = m2

0

(

δij + 1
M2 [θi†

3 θj
3 + θ

i†

3 θ
j

3 + θi†
23θ

j
23 + θ

i†

23θ
j

23] +

1
M4 [(ǫiklθ3,kθ23,l)

†(ǫjmnθ3,mθ23,n) + (ǫiklθ
k
3θl

23)
†(ǫjmnθm

3 θn
23)] + . . .

)

M2
D̃R

SCKM
≃ 6 M2

1/2 1l +







1 0.003 0.003

0.003 1 0.02

0.003 0.02 1






m2

0

(with ε̄ ≃ 0.15,ε ≃ 0.05 )
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At MW in the SCKM basis:

M2

D̃L
≃ 6 M2

1/2
1l +





1 + ε3 ε2ε̄ ε2ε̄+ crun ε̄
3

ε2ε̄ 1 + ε2 ε2 + crun ε̄
2

ε2ε̄+ crun ε̄
3 ε2 + crun ε̄

2 1 + ε̄



m2
0

M2

ẼR
≃ 0.15 M2

1/2
1l +







1 + ε̄3 ε̄
3

3 ε̄3

ε̄
3

3 1 + ε̄2 ε̄2

ε̄3 ε̄2 1 + ε̄






m2

0

M2

ẼL
≃ 0.5 M2

1/2
1l +







1 + ε3 ε
2
ε̄

3 ε2ε̄+ crun ε̄
3

ε
2
ε̄

3 1 + ε2 ε2 + 3 crun ε̄
2

ε2ε̄+ crun ε̄
3 ε2 + 3 crun ε̄

2 1 + ε






m2

0
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At MW in the SCKM basis:

M2

D̃L
≃ 6 M2

1/2
1l +





1 4 × 10−4 7 × 10−4

4 × 10−4 1 4 × 10−3

7 × 10−4 4 × 10−3 1



m2
0

M2

ẼR
≃ 0.15 M2

1/2
1l +





1 0.001 0.003

0.001 1 0.02

0.003 0.02 1



m2
0

M2

ẼL
≃ 0.5 M2

1/2
1l +





1 1 × 10−4 7 × 10−4

1 × 10−4 1 1 × 10−2

7 × 10−4 1 × 10−2 1



m2
0
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WARNING!!!

O(1) coefficients in soft breaking terms completelly unknown.

Following plots are only true in order of magnitude !!

Predictions may easily vary by factors of 2, 3 . . .
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Lepton Flavour Violation

µ→ eγ, tanβ = 10, A0 = 0 τ → µγ, tanβ = 10, A0 = 0

500 1000 1500 2000

200

400

600

800

1000

1200

1400

m0

M
����

1

2

500 1000 1500 2000

200

400

600

800

1000

1200

1400

m0

M
����

1

2

Brown (clear): Present (fut.) µ → eγ bounds, Orange: Present (fut.) τ → µγ bounds.

U. Valencia Oscar Vives



τ vs µ: where to look for new physics? 19

Type I seesaw in MFV SUSY

• Offdiagonal Mass Insertions generated through RGE running
proportional to neutrino Yukawas :

[m2
L̃
]21 ≈ − 1

8π2 (3m
2
0 + A2

0) h23h
∗
13 log(MGUT

MR
)

⇒ LFV depends on the neutrino Yukawa structure

• PMNS-like Yukawas with Ue3 = 0

BR(µ→ eγ) ∝ |Ue3|
2 +O((mc/mt)

2)

⇒ τ → µγ large in these models!!!

U. Valencia Oscar Vives



τ vs µ: where to look for new physics? 20

τ → lilklk versus µ→ eee

• SuperB better sensitivity for τ → 3l:

∝ BR(τ → lilklk) ∼ 2 × 10−10

• Typically in SUSY models, τ → 3l is penguin dominated, then:

BR(τ→lj lklk)

BR(τ→ljγ)
∼ αem,

⇒ τ → µγ is usually better here.

• However other models have large boxes or other contributions and
τ → 3l can be larger: Example: LHT, type II sesaw, type III
seesaw
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LHT⇒ Talk by B. Duling

Type II seesaw (Abada et al. 0707.4058)

• Tree level contributions mediated by triplet Higgs τ → 3l.

BR(τ → 3l) ≃ 10
(

MW

M∆

)4
× |Y∆τi

|2
∣

∣

∣Y∆jj

∣

∣

∣

2

Type III seesaw (Abada et al. 0707.4058)

• Tree level LFV mediated by Z!! ∝ (NN †)iτ

BR(τ → liljlj) ≃ 0.15
∣

∣

∣(NN †)2
iτ

∣

∣

∣

2
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