τ s and Bs versus μ s and Ks where to look for new physics?

Oscar Vives

Warwick, 15 April 2009

• Flavour physics and new physics flavour-dependent generically strongly linked with 3^{rd} generation.

• Flavoured CP violation also associated to mixing and 3rd generation.

 $\begin{array}{|c|c|c|c|c|c|} \hline \textbf{Expect large FCNC and } CP \ \textbf{violation} \\ \hline \textbf{in } Bs \ \textbf{and} \ \tau s \end{array}$

• Flavour physics and new physics flavour-dependent generically strongly linked with $3^{\rm rd}$ generation.

• Flavoured CP violation also associated to mixing and 3rd generation.

Mixings and couplings much smaller in K and μ systems.

Assuming "similar" experimental sensitivity 3rd generation generically better

Experimental View

Kaon and μ physics

In the "SM", small mixings and suppressed CP phases. But new physics has to compete with "small" SM contributions

 \Rightarrow

Complicate measurements, but possible... Small NP reachable in a small background. Kaon and μ physics

In the "SM", small mixings and suppressed CP phases. But new physics has to compete with "small" SM contributions

Complicate measurements, but possible... Small NP reachable in a small background.

B and τ physics

In the SM, larger FCNC and CP transitions. But NP has to compete with this large contribution.

Is it more difficult to find NP here?

Example I: ε_K and B_s mixing in SUSY

• Large contributions possible on $d \to s$ transitions (ε_k) : Re $\{(\delta_R^d)_{12}\} \le 4 \times 10^{-2}, \qquad \operatorname{Im}\{(\delta_R^d)_{12}\} \le 3.2 \times 10^{-3}$

However, things are difficult in B system...

• SM phase in B_s small: $\beta_S = 0.035$, where the SM contribution to mixing: $M_{12}^{\text{SM}} \simeq \frac{\alpha_{em}^2}{8M_W^2 \sin^2 \theta_W} \frac{m_t^2}{M_W^2} \frac{1}{3} f_B^2 B_B (V_{tb}^* V_{ts})^2$ while SUSY contribution:

$$M_{12}^{\text{SUSY}} \simeq \frac{\alpha_s^2}{216M_{\text{SUSY}}^2} f(x) \frac{1}{3} f_B^2 B_B \left(\delta_{LL}^d\right)_{12}^2$$

• To have a large phase in mixing $M_{12}^{B_s} = M_{12}^{SM} + M_{12}^{SUSY}$, we need,

$$1 \simeq \frac{M_{12}^{\text{SUSY}}}{M_{12}^{\text{SM}}} = \frac{\alpha_s^2 \sin^2 \theta_W}{\alpha_{em}^2} \frac{M_W^2}{m_t^2 M_{\text{SUSY}}^2} \frac{8f(x)}{216} \frac{\left(\delta_{LL}^d\right)_{12}^2}{\left(V_{tb}^* V_{ts}\right)^2} = 12.5 \times 0.005 \times 0.04 \times \frac{\left(\delta_{LL}^d\right)_{12}^2}{\left(0.008\right)^2}$$

Thus, to have a large phase in $B_s \implies \left(\delta_{LL}^d\right)_{12} \ge 0.16$

• Present experimental sensitivity in μ LFV decays: $\propto BR(\mu \rightarrow e\gamma) = 10^{-11} (10^{-13})$

while in τ LFV decays:

$$\propto \mathrm{BR}(\tau \to \mu \gamma) = 10^{-8} \ (10^{-9})$$

• Generically we can write $l_i \rightarrow l_j \gamma$ transitions:

$$\mathrm{BR}(l_i \to l_j \gamma) \simeq \left(\frac{M_W}{M_{NP}}\right)^4 \times |\left(\delta^l\right)_{ij}|^2 \times f(\tan\beta, \mu \ldots),$$

 \Rightarrow

Interesting models determined by flavour structure: $|(\delta^l)_{i3}/(\delta^l)_{12}| \gtrsim 30 (100)$

Flavour symmetries in SUSY

- Very different elements in Yukawa matrices: $y_t \simeq 1, y_u \simeq 10^{-5}$
- Expect couplings in a "fundamental" theory $\mathcal{O}(1)$
- Small couplings generated at higher order or function of small vevs.
- Froggatt-Nielsen mechanism and flavour symmetry to understand small Yukawa elements. Example: $U(1)_{fl}$

• Flavour symmetry to understand masses and mixings in Yukawas.

• Yukawas forbidden by symmetry, generated only after Spontaneous Symmetry Breaking. • Flavour symmetry to understand masses and mixings in Yukawas.

- Yukawas forbidden by symmetry, generated only after Spontaneous Symmetry Breaking.
- Unbroken symmetry applies both to fermion and sfermions.
- Diagonal soft masses allowed by symmetry.
- Nonuniversality in soft terms proportional to symm. breaking.

• Flavour symmetry to understand masses and mixings in Yukawas.

- Yukawas forbidden by symmetry, generated only after Spontaneous Symmetry Breaking.
- Unbroken symmetry applies both to fermion and sfermions.
- Diagonal soft masses allowed by symmetry.
- Nonuniversality in soft terms proportional to symm. breaking.

We can <u>relate</u> the structure in Yukawa matrices to the nonuniversality in Soft Breaking masses !!!

Symmetric texture

• Non-Abelian flavour symmetries.

$$Y^{d} = \begin{pmatrix} 0 & 1.5 \varepsilon^{3} & 0.4 \varepsilon^{3} \\ 1.5 \varepsilon^{3} & \varepsilon^{2} & 1.3 \varepsilon^{2} \\ 0.4 \varepsilon^{3} & 1.3 \varepsilon^{2} & 1 \end{pmatrix} y_{b}$$

• Universal sfermion masses in in unbroken limit:

$$\mathcal{L}_{m^2} = m_0^2 \Phi^{\dagger} \Phi = m_0^2 \left(\phi_1 \ \phi_2 \ \phi_3\right)^* \left(\begin{array}{c} \phi_1 \\ \phi_2 \\ \phi_3 \end{array}\right)$$

• After symmetry breaking:

$$M_{\tilde{D}_R}^2 \simeq \begin{pmatrix} 1+\bar{\varepsilon}^3 & \bar{\varepsilon}^3 & 0\\ \bar{\varepsilon}^3 & 1+\bar{\varepsilon}^2 & \bar{\varepsilon}^2\\ 0 & \bar{\varepsilon}^2 & 1+\bar{\varepsilon} \end{pmatrix} m_0^2$$

Asymmetric texture

• Abelian flavour symmetries.

$$Y^{d} = \begin{pmatrix} \varepsilon^{4} & \varepsilon^{3} & \varepsilon^{3} \\ \varepsilon^{3} & \varepsilon^{2} & \varepsilon^{2} \\ \varepsilon & 1 & 1 \end{pmatrix} y_{b}$$

• In principle nonuniversal masses in unbroken symmetry:

$${\cal L}_{m^2} = m_1^2 \; \phi_1^* \phi_1 + m_2^2 \; \phi_2^* \phi_2 + m_3^2 \; \phi_3^* \phi_3$$

• After symmetry breaking: $M_{\tilde{D}_R}^2 \simeq \begin{pmatrix} 1 & \bar{\varepsilon} & \bar{\varepsilon} \\ \bar{\varepsilon} & c & b \\ \bar{\varepsilon} & b & a \end{pmatrix} m_0^2$

FCNC constraints

• Large offdiagonal entries in sfermion mass matrices generally overproduce FCNC and CP Violation transitions

 \Rightarrow SUSY flavour problem

• Strong phenomenological bounds on Mass Insertions

$$\left(\delta^f_A\right)_{ij} \;=\; rac{(m^2_{ ilde{f}_A})_{ij}}{m^2_{ ilde{f}}}$$

- Very stringent bounds on $d \to s$ transitions from ΔM_k and ε_k : $\operatorname{Re}\{(\delta^d_R)_{12}\} \le 4 \times 10^{-2}, \qquad \operatorname{Im}\{(\delta^d_R)_{12}\} \le 3.2 \times 10^{-3}$
- Less stringent bounds from $b \to d$ and $b \to s$ transitions $\operatorname{Re}\{(\delta_R^d)_{13}\}, \operatorname{Im}\{(\delta_R^d)_{13}\} \leq 0.1$

 $(\Rightarrow$ Simple abelian models not allowed by ΔM_k and ε_k)

Abelian Flavour symmetry

• "Realistic" model with two Abelian groups $U(1)_1 \times U(1)_2$

• Charges under
$$(U(1)_1, U(1)_2)$$
:
 $Q_1 \sim (0, 1), \quad Q_2 \sim (1, 0), \quad Q_3 \sim (0, 0), \qquad \phi_1 \sim (-1, 0) \text{ with } \langle \phi_1 \rangle / M = \lambda_c^2$
 $d_1^c \sim (3, -1), \quad d_2^c \sim (1, 0), \quad d_3^c \sim (1, 0), \qquad \text{(flavons)}$
 $u_1^c \sim (0, 1), \quad u_2^c \sim (-1, 1), \quad u_3^c \sim (0, 0) \qquad \phi_2 \sim (0, -1) \text{ with } \langle \phi_2 \rangle / M = \lambda_c^3$
• Yukawa couplings proportional to: $Y_{ij} = \left(\frac{\langle \phi_1 \rangle}{M}\right)^{(q_1^i + q_1^j)} \left(\frac{\langle \phi_2 \rangle}{M}\right)^{(q_2^i + q_2^j)}$
 $M^{d,e} = \langle H_1 \rangle \ \lambda^2 \left(\begin{array}{c} \lambda^4 \quad \lambda^3 \quad \lambda^3 \\ 0 \quad \lambda^2 \quad \lambda^2 \\ 0 \quad 1 \quad 1 \end{array}\right), \qquad M^u = \langle H_2 \rangle \left(\begin{array}{c} \lambda^6 \quad 0 \quad \lambda^3 \\ \lambda^5 \quad \lambda^3 \quad \lambda^2 \\ \lambda^3 \quad 0 \quad 1 \end{array}\right).$

- Soft mass coupling $\phi_i^{\dagger} \phi_i$ invariant under all symmetries \Rightarrow flavour diagonal soft masses allowed by flavour symmetry
- Diagonal masses required to be equal by phenomenology
- After symmetry breaking offdiagonal entries proportional to flavon vevs

$$\begin{split} M_{ij}^2 &= m_0^2 \left(\frac{\langle \phi_1 \rangle}{M} \right)^{|q_1^i - q_1^j|} \left(\frac{\langle \phi_2 \rangle}{M} \right)^{|q_2^i - q_2^j|} \\ M_{\tilde{D}_R, \tilde{E}_L}^2 &\sim m_0^2 \left(\begin{array}{ccc} 1 & \lambda^7 & \lambda^7 \\ \lambda^7 & 1 & 1 \\ \lambda^7 & 1 & 1 \end{array} \right), \quad M_{\tilde{U}_R}^2 \sim m_0^2 \left(\begin{array}{ccc} 1 & \lambda^2 & \lambda^3 \\ \lambda^2 & 1 & \lambda^5 \\ \lambda^3 & \lambda^5 & 1 \end{array} \right), \\ M_{\tilde{D}_L}^2 &= M_{\tilde{U}_L}^2 \sim m_0^2 \left(\begin{array}{ccc} 1 & \lambda^5 & \lambda^3 \\ \lambda^5 & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{array} \right). \end{split}$$

SU(3) Flavour model

- $Q, L \sim \mathbf{3} \text{ and } d^c, u^c, e^c \sim \mathbf{3}; \text{ flavon fields: } \theta_3, \theta_{23} \sim \overline{\mathbf{3}}, \overline{\theta}_3, \overline{\theta}_{23} \sim \mathbf{3}$
- Family Symmetry breaking: $SU(3) \xrightarrow{\langle \theta_3 \rangle} SU(2) \xrightarrow{\langle \theta_{23} \rangle} \emptyset$

$$\theta_3, \overline{\theta}_3 = \begin{pmatrix} 0 \\ 0 \\ a_3 \end{pmatrix}, \ \theta_{23}, \overline{\theta}_{23} = \begin{pmatrix} 0 \\ b \\ b \end{pmatrix} \text{with} \ \left(\frac{a_3}{M}\right) \sim \mathcal{O}(1), \left(\frac{b}{M_u}\right) \simeq \left(\frac{b}{M_d}\right)^2 = \varepsilon \sim 0.05.$$

• Yukawa superpotential: $W_Y = H\psi_i\psi_j^c \left[\theta_3^i\theta_3^j + \theta_{23}^i\theta_{23}^j\left(\theta_3\overline{\theta_3}\right) + \epsilon^{ikl}\overline{\theta}_{23,k}\overline{\theta}_{3,l}\theta_{23}^j\left(\theta_{23}\overline{\theta_3}\right)\right]$

$$Y^{f} = \begin{pmatrix} 0 & a \varepsilon^{3} & b \varepsilon^{3} \\ a \varepsilon^{3} & \varepsilon^{2} & c \varepsilon^{2} \\ b \varepsilon^{3} & c \varepsilon^{2} & 1 \end{pmatrix} \frac{|a_{3}|^{2}}{M^{2}},$$

- Soft mass coupling $\Phi^{\dagger}\Phi$ invariant \Rightarrow common soft mass for the triplet
- Universality guaranteed in the exact symmetry limit.
- After symmetry breaking offdiagonal entries proportional to (complex) flavon vevs

$$M_{ij}^{2} = m_{0}^{2} \left(\delta^{ij} + \frac{1}{M^{2}} \left[\theta_{3}^{i\dagger} \theta_{3}^{j} + \overline{\theta}_{3}^{i\dagger} \overline{\theta}_{3}^{j} + \theta_{23}^{i\dagger} \theta_{23}^{j} + \overline{\theta}_{23}^{i\dagger} \overline{\theta}_{23}^{j} \right] + \frac{1}{M^{4}} \left[\left(\epsilon^{ikl} \overline{\theta}_{3,k} \overline{\theta}_{23,l} \right)^{\dagger} \left(\epsilon^{jmn} \overline{\theta}_{3,m} \overline{\theta}_{23,n} \right) + \left(\epsilon_{ikl} \theta_{3}^{k} \theta_{23}^{l} \right)^{\dagger} \left(\epsilon_{jmn} \theta_{3}^{m} \theta_{23}^{n} \right) \right] + \dots \right)$$

$$M_{\tilde{D}_R}^{2 \text{ SCKM}} \simeq 6 \ M_{1/2}^2 \ \mathbbm{1} + \begin{pmatrix} 1+\bar{\varepsilon}^3 & \bar{\varepsilon}^3 & \bar{\varepsilon}^3 \\ \bar{\varepsilon}^3 & 1+\bar{\varepsilon}^2 & \bar{\varepsilon}^2 \\ \bar{\varepsilon}^3 & \bar{\varepsilon}^2 & 1+\bar{\varepsilon} \end{pmatrix} m_0^2$$

(with $\bar{\varepsilon} \simeq 0.15, \varepsilon \simeq 0.05$)

- Soft mass coupling $\Phi^{\dagger}\Phi$ invariant \Rightarrow common soft mass for the triplet
- Universality guaranteed in the exact symmetry limit.
- After symmetry breaking offdiagonal entries proportional to (complex) flavon vevs

$$M_{ij}^{2} = m_{0}^{2} \left(\delta^{ij} + \frac{1}{M^{2}} \left[\theta_{3}^{i\dagger} \theta_{3}^{j} + \overline{\theta}_{3}^{i\dagger} \overline{\theta}_{3}^{j} + \theta_{23}^{i\dagger} \theta_{23}^{j} + \overline{\theta}_{23}^{i\dagger} \overline{\theta}_{23}^{j} \right] + \frac{1}{M^{4}} \left[(\epsilon^{ikl} \overline{\theta}_{3,k} \overline{\theta}_{23,l})^{\dagger} (\epsilon^{jmn} \overline{\theta}_{3,m} \overline{\theta}_{23,n}) + (\epsilon_{ikl} \theta_{3}^{k} \theta_{23}^{l})^{\dagger} (\epsilon_{jmn} \theta_{3}^{m} \theta_{23}^{n}) \right] + \dots \right)$$

$$M_{\tilde{D}_R}^{2 \text{ SCKM}} \simeq 6 \ M_{1/2}^2 \ \mathbb{1} + \left(\begin{array}{cccc} 1 & 0.003 & 0.003 \\ 0.003 & 1 & 0.02 \\ 0.003 & 0.02 & 1 \end{array} \right) m_0^2$$

(with $\bar{\varepsilon} \simeq 0.15, \varepsilon \simeq 0.05$)

At M_W in the SCKM basis:

$$M_{\tilde{D}_L}^2 \simeq 6 M_{1/2}^2 \mathbbm{1} + \begin{pmatrix} 1+\varepsilon^3 & \varepsilon^2 \bar{\varepsilon} & \varepsilon^2 \bar{\varepsilon} + c_{\rm run} \bar{\varepsilon}^3 \\ \varepsilon^2 \bar{\varepsilon} & 1+\varepsilon^2 & \varepsilon^2 + c_{\rm run} \bar{\varepsilon}^2 \\ \varepsilon^2 \bar{\varepsilon} + c_{\rm run} \bar{\varepsilon}^3 & \varepsilon^2 + c_{\rm run} \bar{\varepsilon}^2 & 1+\bar{\varepsilon} \end{pmatrix} m_0^2$$

$$M_{\tilde{E}_R}^2 \simeq 0.15 \ M_{1/2}^2 \ 1 + \begin{pmatrix} 1 + \bar{\varepsilon}^3 & \frac{\bar{\varepsilon}^3}{3} & \bar{\varepsilon}^3 \\ \frac{\bar{\varepsilon}^3}{3} & 1 + \bar{\varepsilon}^2 & \bar{\varepsilon}^2 \\ \frac{\bar{\varepsilon}^3}{5} & \bar{\varepsilon}^2 & 1 + \bar{\varepsilon} \end{pmatrix} m_0^2$$

$$M_{\tilde{E}_L}^2 \simeq 0.5 \ M_{1/2}^2 \ \mathbbm{1} + \begin{pmatrix} 1+\varepsilon^3 & \frac{\varepsilon^2 \bar{\varepsilon}}{3} & \varepsilon^2 \bar{\varepsilon} + c_{\rm run} \ \bar{\varepsilon}^3 \\ \frac{\varepsilon^2 \bar{\varepsilon}}{3} & 1+\varepsilon^2 & \varepsilon^2 + 3 \ c_{\rm run} \ \bar{\varepsilon}^2 \\ \varepsilon^2 \bar{\varepsilon} + c_{\rm run} \ \bar{\varepsilon}^3 & \varepsilon^2 + 3 \ c_{\rm run} \ \bar{\varepsilon}^2 & 1+\varepsilon \end{pmatrix} m_0^2$$

At M_W in the SCKM basis: $M_{\tilde{D}_L}^2 \simeq 6 M_{1/2}^2 \mathbb{1} + \begin{pmatrix} 1 & 4 \times 10^{-4} & 7 \times 10^{-4} \\ 4 \times 10^{-4} & 1 & 4 \times 10^{-3} \\ 7 \times 10^{-4} & 4 \times 10^{-3} & 1 \end{pmatrix} m_0^2$ $M_{\tilde{E}_R}^2 \simeq 0.15 \ M_{1/2}^2 \ 1 + \left(\begin{array}{cccc} 1 & 0.001 & 0.003 \\ 0.001 & 1 & 0.02 \\ 0.003 & 0.02 & 1 \end{array} \right) m_0^2$
$$\begin{split} M_{\tilde{E}_L}^2 \ \simeq \ 0.5 \ M_{1/2}^2 \ 1 \ + \ \begin{pmatrix} 1 & 1 \times 10^{-4} & 7 \times 10^{-4} \\ 1 \times 10^{-4} & 1 & 1 \times 10^{-2} \\ 7 \times 10^{-4} & 1 \times 10^{-2} & 1 \end{pmatrix} m_0^2 \end{split}$$

O(1) coefficients in soft breaking terms completelly unknown. Following plots are only true in order of magnitude !! Predictions may easily vary by factors of 2, 3...

Lepton Flavour Violation

Brown (clear): Present (fut.) $\mu \to e\gamma$ bounds, Orange: Present (fut.) $\tau \to \mu\gamma$ bounds.

Type I seesaw in MFV SUSY

• Offdiagonal Mass Insertions generated through RGE running proportional to neutrino Yukawas :

$$[m_{\tilde{L}}^2]_{21} \approx -\frac{1}{8\pi^2} (3m_0^2 + A_0^2) \ h_{23} h_{13}^* \log(\frac{M_{GUT}}{M_R})$$

LFV depends on the neutrino Yukawa structure

• PMNS-like Yukawas with $U_{e3} = 0$ BR $(\mu \rightarrow e\gamma) \propto |U_{e3}|^2 + O((m_c/m_t)^2)$

 $\Rightarrow \tau \rightarrow \mu \gamma$ large in these models!!!

• SuperB better sensitivity for $\tau \to 3l$:

 $\propto \mathrm{BR}(\tau \to l_i l_k l_k) \sim 2 \times 10^{-10}$

• Typically in SUSY models, $\tau \to 3l$ is penguin dominated, then: $\frac{\text{BR}(\tau \to l_j l_k l_k)}{\text{BR}(\tau \to l_j \gamma)} \sim \alpha_{em},$

 \Rightarrow $\tau \rightarrow \mu \gamma$ is usually better here.

• However other models have large boxes or other contributions and $\tau \rightarrow 3l$ can be larger: Example: LHT, type II sesaw, type III seesaw

LHT \Rightarrow Talk by B. Duling

Type II seesaw (Abada et al. 0707.4058)

• Tree level contributions mediated by triplet Higgs $\tau \to 3l$.

$$BR(\tau \to 3l) \simeq 10 \left(\frac{M_W}{M_\Delta}\right)^4 \times \left|Y_{\Delta_{\tau i}}\right|^2 \left|Y_{\Delta_{j j}}\right|^2$$

Type III seesaw (Abada et al. 0707.4058)

• Tree level LFV mediated by Z!! $\propto (NN^{\dagger})_{i\tau}$ BR $(\tau \rightarrow l_i l_j l_j) \simeq 0.15 |(NN^{\dagger})_{i\tau}^2|^2$