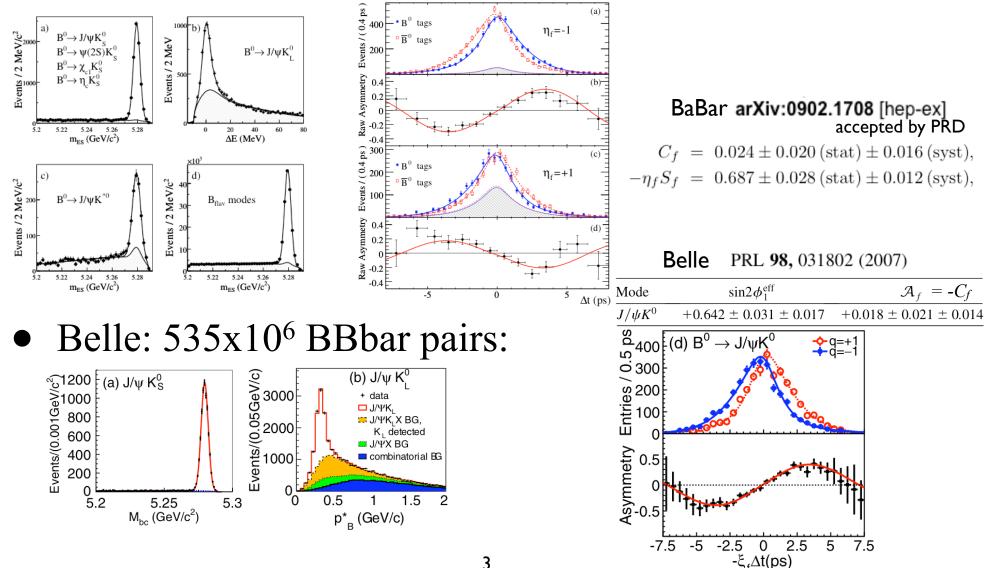
Experimental Status of sin2β in Golden Modes

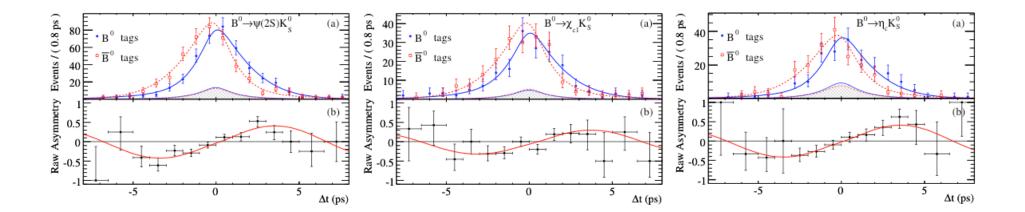
Chih-hsiang Cheng Caltech SuperB Workshop @ Warwick, 2009/04/15

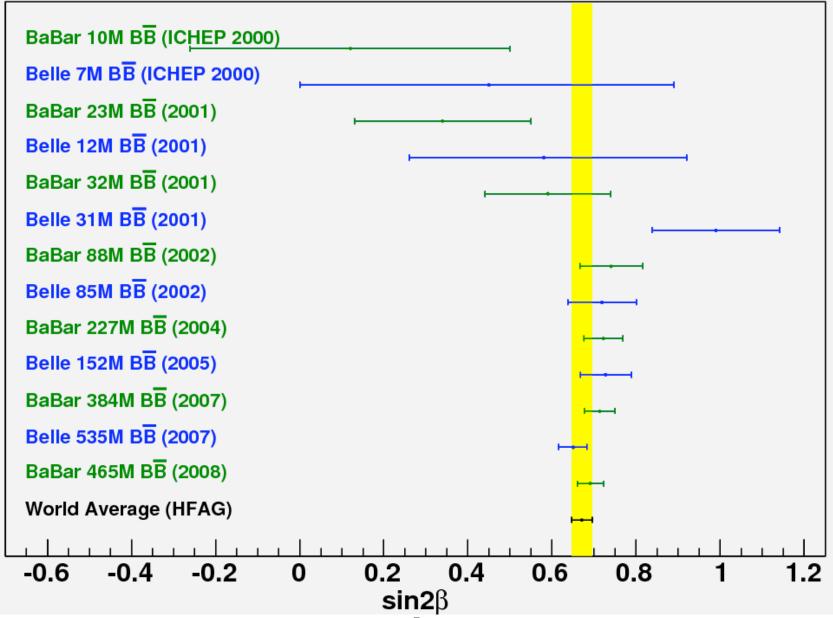


Golden modes

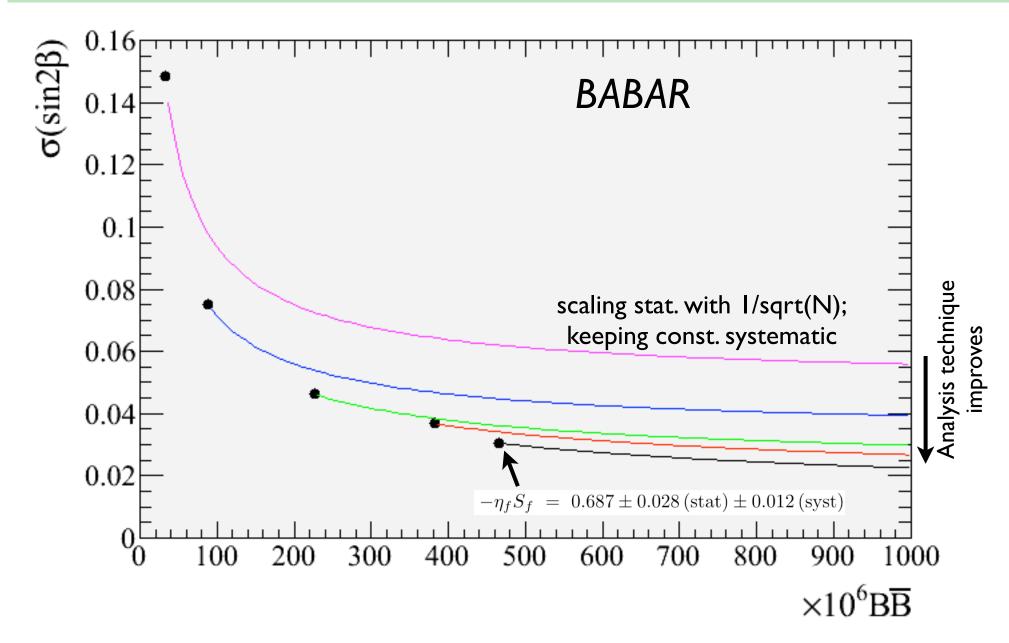
- B^0 decays to a charmonium state plus a $K^{(*)0}$.
- Theoretically clean.
- Copious amount of events: BaBar reconstructs/tags ~33 events/million BBbar at purity of 75%, or ~12 J/ ψ Ks(π + π -) events/million BBbar at purity of 96%.
- **BaBar uses** $J/\psi K_S^0$, $J/\psi K_L^0$, $\psi(2S)K_S^0$, $\eta_c K_S^0$, $\chi_{c1}K_S^0$, and $J/\psi K^*(892)^0$
- Belle doesn't use as many modes.

Latest results


• BaBar: 465x10⁶ BBbar pairs: (final result)


Other charmonium modes are measured quite precisely too

BaBar


Sample	N_{tag}	P(%)	$-\eta_f S_f$	C_{f}
Full CP sample	15481	76	0.687 ± 0.028	0.024 ± 0.020
$\overline{J/\psi K^0_{S}(\pi^+\pi^-)}$	5426	96	0.662 ± 0.039	0.017 ± 0.028
$J/\psi K_{S}^{0}(\pi^{0}\pi^{0})$	1324	87	0.625 ± 0.091	0.091 ± 0.063
$\psi(2S)K_S^0$	861	87	0.897 ± 0.100	0.089 ± 0.076
$\chi_{c1}K_S^0$	385	88	0.614 ± 0.160	0.129 ± 0.109
$\eta_c K_S^0$	381	79	0.925 ± 0.160	0.080 ± 0.124
$J/\psi K_L^0$	5813	56	0.694 ± 0.061	-0.033 ± 0.050
$J/\psi K^{*0}$	1291	67	0.601 ± 0.239	0.025 ± 0.083
$J/\psi K_S^0$	6750	95	0.657 ± 0.036	0.026 ± 0.025
$J/\psi K^0$	12563	77	0.666 ± 0.031	0.016 ± 0.023
$\eta_f = -1$	8377	93	0.684 ± 0.032	0.037 ± 0.023

$Sin 2\beta$ convergence history

Sin2ß uncertainty history

Technique


- The physical parameters (S and C), along with many other parameters, are fitted using CP signal sample and flavor-specific control sample (Bflav, e.g. $B \rightarrow D^{*-}\pi^{+}$, which is 10x larger) simultaneously (to reduce systematic uncertainties).
- Events are divided into several tagging categories to increase sensitivity.
- Parameters include resolution function, tagging dilutions, tagging difference between B and Bbar, reconstruction and tagging efficiency differences, (and for background too) etc.

Δt resolution

• The Δt resolution is dominated by the tag-side vertex because of secondary charm decays. It is determined from Bflav sample.

B_{tag} vertex

tracks, Vos

Effectively a B-mixing analysis, but we are not interested in Δ md, but Δ t resolution (and tagging)

Flavor tagging

- Flavor of the tag-side B is determined from Bflav sample using a neural network, which exploits several tag signatures such as isolated primary leptons, kaons and pions, soft pion from D*, kaon-pion charge correlation, etc.
- BaBar achieves an overall Q value of better than 31%, which has grown from 27% since the first BaBar sin2β publication due to better particle ID and improved NN. Recently BaBar improves Q even further to 33%.

Category	$\varepsilon_i \ (\%)$	$w_i \ (\%)$	$\Delta w_i \ (\%)$	$Q_i \ (\%)$
Lepton	8.96 ± 0.07	2.8 ± 0.3	0.3 ± 0.5	7.98 ± 0.11
$Kaon \ I$	10.82 ± 0.07	5.3 ± 0.3	-0.1 ± 0.6	8.65 ± 0.14
Kaon II	17.19 ± 0.09	14.5 ± 0.3	0.4 ± 0.6	8.68 ± 0.17
KaonPion	13.67 ± 0.08	23.3 ± 0.4	-0.7 ± 0.7	3.91 ± 0.12
Pion	14.18 ± 0.08	32.5 ± 0.4	5.1 ± 0.7	1.73 ± 0.09
Other	9.54 ± 0.07	41.5 ± 0.5	3.8 ± 0.8	0.27 ± 0.04
All	74.37 ± 0.10			31.2 ± 0.3

$$Q = \epsilon_{\text{tag}} (1 - 2w)^2 \qquad \sigma_{S,C} \propto \frac{1}{\sqrt{Q}}$$

Major systematics

- For S: (total 0.012)
 - tagging difference between CP and Bflav samples (0.006),
 - Δt resolution (0.007),
 - background characteristics (fraction, CP content) (0.008)
- For C: (total 0.016)
 - ► tag-side interference (0.014)

How to improve systematics?

- With much larger statistics in SuperB (and thus improved understanding of B decay branching fractions and CP asymmetry) and better simulation, systematics from Δt resolution, background, and part of tagging difference are likely to improve somewhat with statistics without too much effort.
 - caveat: in SuperB the ∆t resolution may not be dominated by tag-side anymore b/c reduced boost and better vertexing. More studies are needed to understand the resolution difference.
- We has been ignoring the CPV in Bflav sample [$\sim r_B \sin(2\beta + \gamma)$; $r_B \sim 0.02$]. It plays in part into the tagging difference from CP sample. We expect it to be measured for some Bflav channels in SuperB, thus reduce our systematics.

How to improve systematics?

- Use cleaner modes to reduce background systematics.
- Use lepton tag only to reduce background and eliminate tag-side interference.
 - Lepton tag accounts for >25% of the Q value.
- Other ideas?

Conclusions

- At B-factories, sin2β has been measured at a precision of ~0.03, combining the two factories (10⁹ BBbar) the precision is ~0.024.
- At SuperB (aiming for 100x data), the stat. error can achieve 0.002, or 0.004 if using lepton tag only (or better if we improve the detector and algorithm).
- Systematic uncertainty should be able to cut to half to ~0.006 (my personal guesstimate).