Nonleptonic $b \rightarrow s$ transitions: sin 2 β and possible NP contributions

Martin Jung

in collaboration with Th. Feldmann and Th. Mannel JHEP 0808:066,2008

Instituto de Física Corpuscular - IFIC, CSIC-UVEG, Valencia

SuperB Physics Workshop in Warwick 14/04/09

$NP \ In \ D \rightarrow Sqq$
M. Jung
Motivation
Setup
$B \rightarrow J/\psi K, \phi K$
Conclusion and outlook

Outline

Motivation

Setup

 $B \rightarrow J/\psi K$ and $B \rightarrow \phi K$

 $B \to \pi K$

Conclusion and outlook

NP in $b \rightarrow s\bar{q}q$ M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and outlook

Motivation

- Last few years: shift of focus: CKM main source of (low energy) CP violation 🗸
 - What about new physics (NP)?
- NP expected at the TeV-scale
- Direct search will be performed at the LHC
- Flavour physics complementary tool
 - High sensitivity, even beyond LHC reach
 - But: Flavour data still compatible with SM Flavour Puzzzle

Tensions (?)

Small tensions in $|\Delta S| = |\Delta B| = 1$ - processes:

- ▶ sin 2 β from $B \rightarrow J/\psi K_S$ vs. sin 2 β from $|V_{ub}/V_{cb}|$ and $\Delta m_d/\Delta m_s$
- ▶ sin 2 β from $B \rightarrow J/\psi K_S$ vs. sin 2 β from $B \rightarrow \phi K_S$ Note: Naive $b \rightarrow s\bar{s}s$ average compatible by now
- CP-Asymmetries in $B \rightarrow K\pi$ (?)

Implications for possible NP Flavour Structure?

Apparently:

- Different effects in $(\sin 2\beta)_{J/\psi K}$ and $(\sin 2\beta)_{\phi K}$
- Deviations in direct CP asymmetries and BRs

Assume NP in $|\Delta B| = |\Delta S| = 1$ amplitudes Here: Neglect effects in mixing

(See however talk by Th. Mannel)

Motivation
Setup
$$B \rightarrow J/\psi K, \phi K$$

 $B \rightarrow \pi K$
Conclusion and
outlook

Strategy

Problem twofold:

- Understand SM hadronic process
- Determine NP influence

We explore $b \rightarrow s \bar{q} q$ -processes the following way:

- Take SM $|\Delta B| = |\Delta S| = 1$ effective Hamiltonian
- Perform fit without NP, using isospin decomposition of hadronic amplitudes and order-of-magnitude estimates
- Include NP "operator-wise"
- Determine UT parameters independent of this NP
- Determine allowed ranges for NP contributions

Statistical treatment using RFit (CKMfitter)

M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and outlook

NP in $b \rightarrow s\overline{a}a$

UT analysis

Determine β and γ by independent measurements:

• Use only $|V_{ub}/V_{cb}|$, Δm_d and Δm_s (Moriond '09)

- Tension decreased due to larger error for V_{ub}
- ► $B \rightarrow \tau \nu$ not included (avoid f_B/B_{B_d} discussion) Inclusion increases tension above the old level \rightarrow large(r) $\Delta l = 0$ contributions

M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and outlook

NP in $b \rightarrow s\overline{a}a$

$B \rightarrow J/\psi K, \phi K$ in the SM

- ► $B \rightarrow J/\psi K$: Tree-dominated, governed by a single amplitude $(+\mathcal{O}(\frac{P}{T}\lambda^2) \sim \mathcal{O}(\lambda^3))$, "Gold-plated")
- ► $B \rightarrow \phi K$: Penguin-dominated, governed by a single amplitude $(+\mathcal{O}(\lambda^2))$
- Expected observables (neglecting $\mathcal{O}(\lambda^3, \lambda^2)$ terms):
 - Mixing-induced CP-Asymmetry:

$$S + \sin(2\beta) \simeq 0$$

Direct CP-Asymmetries:

$$\Delta A_{CP} = A_{CP}^{dir}(\bar{B}^0) - A_{CP}^{dir}(B^-) \simeq 0$$

Rate Asymmetry:

$$A_I = \frac{\Gamma_- - \Gamma_0}{\Gamma_- + \Gamma_0} \simeq 0$$

M. Jung
M. Jung
Motivation
$$B \rightarrow J/\psi K, \phi K$$

 $B \rightarrow \pi K$
Conclusion and

outlook

$B \rightarrow J/\psi K, \phi K$ - with New Physics

Experimental values for $B \rightarrow J/\psi K, \phi K$:

Observable	$B ightarrow J/\psi K$	$B o \phi K$
$S + \sin 2\beta$	$0.089^{+0.029}_{-0.032}\pm 0.081$	$0.31^{+0.18}_{-0.17}\pm 0.08$
ΔA_{CP}	$0.019 \pm 0.026(*)$	0.20 ± 0.16
A	0.036 ± 0.025	$-0.04^{+0.07}_{-0.08}$

Deviation from SM expectations at $(1-2)\sigma$

Including NP operators:

- ► $S + \sin 2\beta$ constrains $b \to s\bar{c}c$ and $b \to s\bar{s}s$ contribution (but these induce no change in ΔA_{CP} and A_{I})
- ► ΔA_{CP} and A_I constrain $b \rightarrow s \bar{u} u$ and $b \rightarrow s \bar{d} d$ (these result in a $\Delta I = 1$ contribution as well)
- Here: Show only fits to $\Delta I = 0 + 1$ contributions

NP in $b \rightarrow s\bar{q}q$ M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and outlook

Parameterisation

We parameterise the amplitudes in this case as

$$\mathcal{A}(B^+ \to J/\psi K^+) = \mathcal{A}_0 \left[1 + r_0 e^{i\theta_W} e^{i\phi_0} - r_1 e^{i\theta_W} e^{i\phi_1} \right] \mathcal{A}(\bar{B}_d \to J/\psi \bar{K}^0) = \mathcal{A}_0 \left[1 + r_0 e^{i\theta_W} e^{i\phi_0} + r_1 e^{i\theta_W} e^{i\phi_1} \right]$$

"Reparametrisation invariance":

Weak phase θ_W is not observable unless (some) parameters are fixed by theory ($\rightarrow B \rightarrow \pi K$)

Take $\theta_W = \pi - \gamma_{SM}$ as reference \rightarrow Possible interpretation as (CKM suppressed) SM contributions NP in $b \rightarrow s \overline{q} q$ M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and

$b \rightarrow s \bar{u} u, \bar{d} d$ NP operator in $B \rightarrow J/\psi K$

M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and outlook

NP in $b \rightarrow s\overline{q}q$

$b \rightarrow s \bar{u} u, \bar{d} d$ NP operator in $B \rightarrow \phi K$

NP in $b \rightarrow s \overline{q} q$

Conclusion $B \rightarrow J/\psi K$ and $B \rightarrow \phi K$

- ➤ Assumed vanishing suppressed contributions from SM → confirmed in most estimates, see, however, [Ciuchini et al.'05, Faller et al.'08, talk by Th. Mannel]
- In both cases non-vanishing contributions from $\Delta I = 1$ -operators preferred
- For $B \to \phi K$ also indication of $\Delta I = 0$ contribution
- Relative size as expected
- Small strong phases preferred

Future tasks:

- Belle/BaBar discrepancies in $A_{CP}(B \rightarrow J/\psi K)$
- Significant measurements of direct CP violation / critical observables
- Method to calculate matrix elements for these decays

NP in $b \rightarrow s\overline{q}q$ M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and outlook

$B \rightarrow \pi K$ in the SM

 Penguin dominant, but Tree and EW-Penguin contributions are relevant

• Parameterisation
$$(\mathcal{A}^{-0} = \mathcal{A}(B^- \to \pi^- \bar{K}^0)$$
 etc.):

$$\begin{aligned} \mathcal{A}^{-0} &= \mathcal{P}\left(1 + \epsilon_{a} e^{i\phi_{a}} e^{-i\gamma}\right), \\ -\sqrt{2} \mathcal{A}^{0-} &= \mathcal{P}\left(1 + \epsilon_{a} e^{i\phi_{a}} e^{-i\gamma} - \epsilon_{3/2} e^{i\phi_{3/2}} \left(e^{-i\gamma} - q e^{i\omega}\right)\right), \\ -\mathcal{A}^{+-} &= \mathcal{P}\left(1 + \epsilon_{a} e^{i\phi_{a}} e^{-i\gamma} - \epsilon_{T} e^{i\phi_{T}} \left(e^{-i\gamma} - q_{C} e^{i\omega_{C}}\right)\right), \\ \sqrt{2} \mathcal{A}^{00} &= \mathcal{A}^{-0} + \sqrt{2} \mathcal{A}^{0-} - \mathcal{A}^{+-}. \end{aligned}$$

Too many parameters for a generic fit

Additional theoretical input needed Statements involve stronger model-dependence

Motivation
Setup
$$B \rightarrow J/\psi K, \phi K$$

 $B \rightarrow \pi K$
Conclusion and

Inputs SM fit

We use the following results of QCDF for the SM fit:

- ► SU(3)_F symmetry relation for qe^{iω} receives only small corrections.
- ϵ_a is tiny (in accord with experiment).
- q_C is of minor numerical importance.
- ▶ we set $\epsilon_a \equiv 0$ and $q_{(C)}e^{i\omega_{(C)}}$ to their QCDF ranges, including "standard" power-corrections

q= 0.59 \pm 0.12 \pm 0.07, ω = -0.044 \pm 0.049,

 $q_{C} = 0.083 \pm 0.017 \pm 0.045 \,, \,\, \omega_{C} = - \, 1.05 \pm 0.86 \,.$

Not conservative at this point

M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$

NP in $b \rightarrow s\overline{a}a$

Conclusion and outlook

$B \rightarrow \pi K \text{ SM results}$

Fitting for the remaining five quantities:

- Fit results in $\chi^2/d.o.f. = 3.8/3$; not too bad
- Even |C/T| is not large ("B → Kπ data compatible with SM" [Ciuchini et al. '08])
- Reason: $S + \sin 2\beta$ and A_{CP}^{00} shrinked
- But there are still some deviations:
 - $|\Delta \epsilon| := |\epsilon_T e^{i\phi_T} \epsilon_{3/2} e^{i\phi_{3/2}}|$ still larger than in QCDF. Fit with $\Delta \epsilon \equiv 0$ does not work.
 - ► $\Delta A = A_{CP}^{0-} A_{CP}^{+-} \approx C(\pi^0 K^0)$ not fulfilled $(1 2\sigma, but: Belle/BaBar "annihilate")$ → Improvement with modified EWP only moderate [Baek et al. '09]
 - ▶ Using SU(3) with $B \to \pi^+ \pi^0$ data leads to deviation in $S_{CP} A_{CP}(\pi^0 K^0)$ plane [Fleischer et al. '08]

NP in
$$b \rightarrow s \bar{q} q$$

M. Jung
Motivation
Setup
 $B \rightarrow J/\psi K, \phi K$
 $B \rightarrow \pi K$
Conclusion and
outlook

$B \rightarrow \pi K$ with NP

Including NP contributions:

- Again, operators with $\Delta I = 0$ only do not help
- ▶ $b \rightarrow s\bar{d}d$ induces direct CP violation in $B^- \rightarrow \bar{K}^0 \pi^-$ → has to be small
- ▶ perform fit with $b \rightarrow s \overline{u}u$ -operator → three new isospin amplitudes → $r_0, r_{1/2}, r_{3/2}$

Again too many parameters \rightarrow Additional approximations:

- Require $A_{CP}^{0-} \equiv 0 \rightarrow$ eliminates 2 parameters
- Set $\epsilon_T e^{i\phi_T} = \epsilon_{3/2} e^{i\phi_{3/2}} = (\text{QCDF-ranges})$
- θ_W = π − γ_{SM} as reference
 (but rep. inv. broken by QCDF-input)

Yields good fit $(\chi^2/d.o.f. = 2.6/3)$ ("Perfect" fit with huge NP contributions ignored) M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and

NP in $b \rightarrow s\overline{a}a$

$b ightarrow s ar{u} u$ operator in $B ightarrow K \pi$

Solution shown:	reasonable order of magnitude	

 $\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline r_{1/2}\cos\phi_{1/2}^s & r_{1/2}\sin\phi_{1/2}^s & r_{3/2}\cos\phi_{3/2}^s & r_{3/2}\sin\phi_{3/2}^s \\ \hline & [-0.12;0.05] & [-0.05;-0.02] & [-0.24;0.05] & [-0.01;0.01] \\ \hline \end{array}$

- Again $b \rightarrow s \bar{u} u$ preferred
- Small strong phases

Conclusion and outlook

- ▶ Tensions in $b \rightarrow s\bar{s}s$ and V_{ub} reduced with recent data
- ▶ Not discussed: $B \rightarrow \tau \nu$, $B_{d,s}$ -mixing, ϵ_K , ...
- ▶ Still curious pattern: (NP?) $b \rightarrow s \bar{u} u$ operator could explain the data
- ► $B \rightarrow \pi K$: Room for NP, QCD difficult to discriminate Conflict with $B \rightarrow \pi \pi$ on which side?
- Moderate improvement of experimental sensitivity may lead to interesting conclusions...

Precision measurements in B-decays continue to give interesting constraints on NP flavour structure (\rightarrow LHCb, Super-B,...)

M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and

outlook

NP in $b \rightarrow s\overline{a}a$

Backupslides

- Experimental data
- Which input to use?
- Reparametrisation invariance
- Powercounting in $B \rightarrow J/\psi K, \phi K$

NP in $b \rightarrow s\bar{q}q$ M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and outlook

Experimental data for $b \rightarrow s\bar{q}q$ transitions

NP in $b \rightarrow s\overline{q}q$

M. Jung

Motivation

Setup

 $B \rightarrow J/\psi K, \phi K$

 $B \rightarrow \pi k$

Conclusion and outlook

Decay	BR	A _{CP}	S _{CP}
$B^- \rightarrow J/\psi K^-$	$(10.07\pm0.35)10^{-4}$	$0.017 \pm 0.016(*)$	-
$ar{B}^0 ightarrow {J/\psi} ar{K}^0$	$(8.71 \pm 0.32) 10^{-4}$	$-0.002 \pm 0.020(*)$	0.657 ± 0.025
$B^- \rightarrow \phi K^-$	$(8.3\pm0.65)10^{-6}$	0.034 ± 0.044	-
$ar{B}^0 o \phi ar{K}^0$	$(8.3^{+1.2}_{-1.0})10^{-6}$	0.23 ± 0.15	$-(0.44^{+0.17}_{-0.18})$
$B^- \rightarrow \pi^0 K^-$	$(12.9\pm0.6)10^{-6}$	0.050 ± 0.025	-
$B^- \rightarrow \pi^- \bar{K}^0$	$(23.1 \pm 1.0) 10^{-6}$	0.009 ± 0.025	-
$ar{B}^0 ightarrow \pi^+ K^-$	$(19.4\pm0.6)10^{-6}$	$-0.098^{+0.012}_{-0.011}$	-
$ar{B}^0 o \pi^0 ar{K}^0$	$(9.8 \pm 0.6) 10^{-6}$	-0.01 ± 0.10	-0.57 ± 0.17

Which input to use?

Recent analyses of $B \rightarrow \pi K$ puzzle come to different conclusions. Schematically:

- ▶ No NP needed in $B \rightarrow \pi K$ [Ciuchini et al. '08]
- Puzzle reduced, mod. EWP do not help much [Baek et al. '09]
- ► Discrepancy in S_{CP} − A_{CP}(B → π⁰K⁰) plane, mod. EWP help [Fleischer et al. '08]

Inputs are:

- QCDF + large non-factorizable corrections
- Fleischer/Neubert/Rosner relations (both)
- Neubert/Rosner relation I, BR(B → π⁺π⁰) (fixes mainly ϵ_{3/2}, large phase)

NP in $b \rightarrow s\overline{q}q$ M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and outlook

Reparametrisation invariance

The amplitude is invariant under the transformations

$$\begin{array}{rcl} \mathcal{A}_{0} & \to & \mathcal{A}_{0} \left(1 + \xi \, r_{0} \, e^{i\phi_{s}^{0}} \right), \\ r_{0} \, e^{i\phi_{s}^{0}} & \to & \displaystyle \frac{r_{0} \, e^{i\phi_{s}^{0}} \, \sqrt{1 - 2 \, \xi \, \cos \phi_{w}^{0} + \xi^{2}}}{1 + \xi \, r_{0} \, e^{i\phi_{s}^{0}}} \\ e^{i\phi_{w}^{0}} & \to & \displaystyle \sqrt{\frac{e^{i\phi_{w}^{0}} - \xi}{e^{-i\phi_{w}^{0}} - \xi}}, \\ r_{1} \, e^{i\phi_{s}^{1}} & \to & \displaystyle \frac{r_{1} \, e^{i\phi_{s}^{1}}}{1 + \xi \, r_{0} \, e^{i\phi_{s}^{0}}}, \end{array}$$

as long as the leading SM-matrix-element \mathcal{A}_0 is not fixed.

NP in $b \rightarrow s\bar{q}q$ M. Jung Motivation Setup $B \rightarrow J/\psi K, \phi K$ $B \rightarrow \pi K$ Conclusion and outlook

SM and NP contributions and suppression factors:

Contr	Suppression factors					Commont	Setup
Contr.	Op.	Dyn.	CKM	NP	Π	Comment	$B \rightarrow J/\psi K, q$ $B \rightarrow \pi K$
$\lambda_c^s T$	1	1	1	-	1		Conclusion and
$\lambda_c^s P^{\bar{c}c}$	λ	1	1	-	λ	${\cal O}(1) \longrightarrow \lambda^s_c A^0_c$	outlook
$\lambda_c^s P_{I=0}^{\bar{q}q}$	λ	λ	1	-	λ^2		
$\lambda_c^s P_{I=1}^{\overline{q}q}$	λ^2	λ	1	-	λ^3		
$\lambda_u^s T$	1	λ	λ^2	-	λ^3	$ \leq \mathcal{O}(\lambda^3) imes \lambda^s_c A^0_c $	
$\lambda_u^s P^{\bar{c}c}$	λ	1	λ^2	-	λ^3	\longrightarrow "gold-plated	
$\lambda_u^s P_{L=0}^{\bar{q}q}$	λ	λ	λ^2	-	λ^4	mode"	
$\lambda_u^s P_{I=1}^{\bar{q}q}$	λ^2	λ	λ^2	-	λ^5		
$P_{0/c}^{\overline{c}c}$	1	1	1	λ	λ	$(0(1))$ \sim 15.40	
$P_{0/c,I=0}^{\vec{q}q}$	1	λ	1	λ	λ^2	$U(\lambda) \times \lambda_c^s A_c^s$	
$P_{c,l=1}^{\overline{q}q}$	1	λ	1	λ	λ^2	$\mathcal{O}(\lambda^2) imes \lambda^s_c A^0_c$	

NP in $b \rightarrow s\overline{q}q$

 $B \rightarrow \phi K$

SM and NP contributions and suppression factors:

Contr	Suppression factors					Commont	Setup
Contr.	Op.	Dyn.	CKM	NP	Π	Comment	$B \rightarrow J/\psi K, c$
$\lambda_c^s T$	1	λ	1	-	λ		$B \rightarrow \pi \kappa$
$\lambda_c^s P^{\bar{s}s}$	λ	1	1	-	λ	$\mathcal{O}(\lambda) \longrightarrow \lambda_c^s A_c^0$	outlook
$\lambda_c^s P_{I=0}^{\bar{q}q}$	λ	λ	1	-	λ^2		
$\lambda_c^s P_{I=1}^{\overline{q}q}$	λ^2	λ	1	-	λ^3		
$\lambda_u^s T$	1	λ	λ^2	-	λ^3		
$\lambda_{u}^{s}P^{\bar{s}s}$	λ	1	λ^2	-	λ^3	$ \leq \mathcal{O}(\lambda^2) imes \lambda^s_c A^0_c$	
$\lambda_u^s P_{I=0}^{\bar{q}q}$	λ	λ	λ^2	-	λ^4		
$\lambda_u^s P_{I=1}^{\bar{q}q}$	λ^2	λ	λ^2	-	λ^5		
$P_{0/c}^{\overline{s}s}$	1	1	1	λ	λ	$(0(1),\ldots) \leq 40$	
$\left P_{0/c,I=0}^{\vec{q}q} \right $	1	λ	1	λ	λ^2	$U(1) \times \lambda_c^s A_c^s$	
$P_{c,l=1}^{\overline{q}q}$	1	λ	1	λ	λ^2	$\mathcal{O}(\lambda) imes \lambda^{s}_{c} \mathcal{A}^{0}_{c}$	

NP in $b \rightarrow s\overline{q}q$