Classes of New Physics models

emerging

that connect flavour dynamics for D and K

much more on a `par level' than the SM

thus opening the gateways for observable NP effects in $\mathcal{L}P$ and rare decays in $\Delta C \neq 0$

Grossman et al., Buras et al., Petrov et al., others (?)

Just one example

LHT (=Littlest Higgs Model with T parity) → designed to `delay the day of reckoning' -i.e. reconcile SM electroweak quantum corrections with NP to emerge directly at the LHC → will never win a prize for mathematical elegance → flavour dynamics not part of the motivation! ✓ even so: LHT ≠ MFV with `relatively' few flavour param. → LHT could generate

 \Box the observed value of x_D without violating any other bound

• exhibiting a weak phase only moderately constrained!

• moderate impact on $B_s \rightarrow \psi \phi$, $K \rightarrow \pi \nu \nu$ Buras et al., Okada et al.

Blanke, Buras, Recksiegel, IB

Yes, very few wrong sign leptons in SL D⁰ decays -but their CP asymmetry could be huge ≠ SM!

$$D^0 \rightarrow K_S \phi$$

Oscillation-induced $P: S(D^0 \rightarrow K_S \phi)$

Even if $B_s \rightarrow \psi \phi$ SM-like still large footprint possible in \mathcal{O}^{ρ} in D decays On Rare Charm Decays

"Apparent" FCNC

$$D^0$$
, D^+ , $D_s^+ \rightarrow I^+I^- X_q$, $X_q = h$, h_1h_2 , $h_1h_2h_3$

Measuring rates and spectra

Rather skeptical about establishing NP there

(maybe an outside chance with

 $D^{0}, D_{(s)}^{+} \rightarrow |^{+}|^{-}K/K^{*}/... vs. \pi/\rho/...$

if NP does not follow Cabibbo pattern)

- -- unless find forward-backward or *P* asymmetries
- 😊 can learn about hadronization effects

 \odot input info for T odd moments & \mathscr{P} in D \rightarrow K⁺K⁻ $\mu^{+}\mu^{-}$

