The Charm of the Littlest Higgs with T-Parity CP-Violation in $D^0 - \overline{D}^0$ Oscillations

Monika Blanke

MPP Munich & TU Munich

Workshop on New Physics with SuperB Warwick, UK April 14, 2009

based on: BIGI, MB, BURAS, RECKSIEGEL, 0904.1545

M. Blanke The Charm of the Littlest Higgs with T-Parity

- 1 Why Study Charm Physics in LHT?
- 2 Basic Ingredients of the LHT Model
- 3 $D^0 \overline{D}^0$ Mixing and CP-Violation in the LHT Model
- 4 Conclusions

news on K and B physics and LFV in the LHT model: MB, Buras, Duling, Recksiegel, Tarantino, 0904.soon talk by Björn Duling, tomorrow morning!

The Bet

Andrzej Buras has authorized me to make the following statement: He is willing to bet his beard that LHT models would lead to observable $\not\curvearrowright$ in D decays!

The Bet – Part II

Ikaros Bigi has authorized me to make the following statement: He is willing to grow a beard if p^{p} is not observed in D decays by 2017!

The Judges

MB

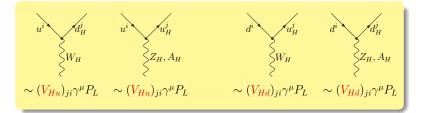
Stefan Recksiegel

➤ foundation of the BBBR collaboration

Basic Ingredients of the LHT Model

Symmetries in the Littlest Higgs Model with T-Parity

Arkani-Hamed, Cohen, Georgi, hep-th/0104005, hep-ph/0105239 ARKANI-HAMED, COHEN, KATZ, NELSON, HEP-PH/0206021 CHENG, LOW, HEP-PH/0308199, HEP-PH/0405243 Low, hep-ph/0409025 $\Lambda \sim 10$ TeV: UV cut-off global: SU(5) local: $SU(2) \times U(1) \times SU(2) \times U(1)$ T-parity = discrete symmetry ~ 1TeV: LHT dynamics SM particles even new particles odd global: SO(5) local: $SU(2) \times U(1)$ Higgs = Goldstone Boson of $SU(5) \rightarrow SO(5)$ collective symmetry breaking 246 GeV: EWSB


The Who-Is-Who in the LHT Model

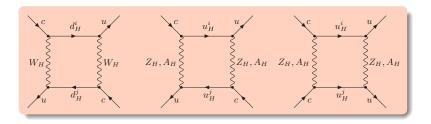
	T-even sector	T-odd sector
gauge bosons	W^\pm_L , Z_L , A_L	W_{H}^{\pm} , Z_{H} , A_{H}
	gluons	—
fermions	SM quarks	mirror quarks
	top partner T_+	T_{-}
	SM leptons	mirror leptons
scalars	Higgs doublet <i>H</i>	scalar triplet Φ

Basic Ingredients of the LHT Model

Flavour Violation by Mirror Quarks

SM quarks couple to heavy gauge bosons & mirror fermions:

> new FCNC contributions at the **loop level** (T-parity)


 \succ new sources of flavour and CP-violation (V_{Hu}, V_{Hd})

$$V_{Hu} = V_{Hd} V_{\rm CKM}^{\dagger}$$

Hubisz, Lee, Paz, hep-ph/0512169 MB, Buras, Poschenrieder, Tarantino, Uhlig, Weiler, hep-ph/0605214 BBPTUW+Recksiegel, hep-ph/0609284 $D^0 - \overline{D}^0$ Mixing and CP-Violation in the LHT Model

LHT Contributions to $\Delta C = 2$

Hubisz, Lee, Paz, hep-ph/0512169 MB, Buras, Poschenrieder, Tarantino, Uhlig, Weiler, hep-ph/0605214 MB, Buras, Recksiegel, Tarantino, Uhlig, hep-ph/0703254

- Ioop contributions by heavy gauge bosons & mirror fermions
- new source of flavour and CP-violation
- pure $(V A) \otimes (V A)$ structure

 $D^0 - \overline{D}^0$ Mixing and CP-Violation in the LHT Model

$D^0 - \overline{D}^0$: SM Prediction & Experimental Status

$D^0-ar{D}^0$ oscillations in the SM

- SD contribution (box diagrams) highly suppressed by GIM
- dominated by LD contributions

> poorly known: $|x_D|, |y_D| \lesssim \mathcal{O}(10^{-2})$

> no CP-violation!

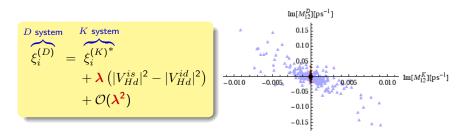
experimentally

- evidence for $D^0 ar{D}^0$ mixing at the 9.8 σ level
- CP-conserving data already constraining
 - $x_D = \frac{\Delta M_D}{\Gamma_D} = 0.0100^{+0.0024}_{-0.0026}$ $y_D = \frac{\Delta \Gamma_D}{2\Gamma_D} = 0.0076^{+0.0017}_{-0.0018}$

• still a lot of room for CP-violation: $\left|\frac{q}{p}\right| = 0.86^{+0.17}_{-0.15}$

Recipe for the Numerical Analysis

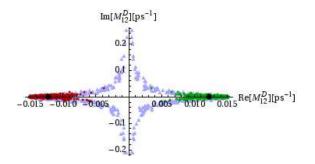
BBBR


- Generate LHT parameter points that fulfil present K and B physics constraints (f = 1 TeV)
- Evaluate (M^D₁₂)_{LHT}
- **Obtermine** $(M_{12}^D)_{\text{SM}}$, $(\Gamma_{12}^D)_{\text{SM}}$ required to fit the data on x_D , y_D
- Galculate CP-violating observables in the D system
- Study relation with K and B physics

points fulfilling K, B constraints (2 solutions for $(M_{12}^D)_{SM}$, $(\Gamma_{12}^D)_{SM}$) points *not* fulfilling ε_K

Connection to $K^0 - \overline{K}^0$ Mixing

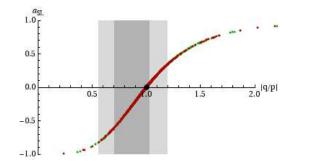
in LHT only left-handed FCNCs


- > K and D systems strongly correlated $(SU(2)_L \text{ symmetry})$
- violation of correlation through CKM misalignment
- \succ corrections suppressed by Cabibbo angle λ

BLUM, GROSSMAN, NIR, PEREZ, 0903.2118; BBBR

Constraint in the Complex M_{12}^D Plane

BBBR

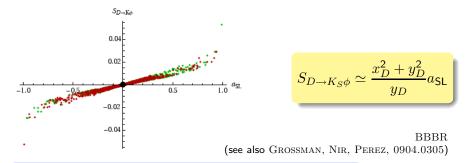

- non-trivial constraint from $D^0 \overline{D}^0$ data
- LHT: additional strong constraint from ε_K
- $\arg(M_{12}^D)$ essentially unconstrained

 $D^0 - \bar{D}^0$ Mixing and CP-Violation in the LHT Model

CP-Violation in $D^0 - \overline{D}^0$ Oscillations

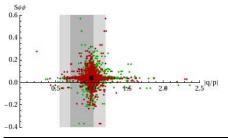
- $\left|\frac{q}{p}\right| \neq 1$ measures CP-violation in $D^0 \bar{D}^0$ mixing
- exp. signature: asymmetry in "wrong sign" leptons

$$a_{\mathsf{SL}} = \frac{\Gamma(D^0 \to \ell^- \bar{\nu} K^{+(*)}) - \Gamma(\bar{D}^0 \to \ell^+ \nu K^{-(*)})}{\Gamma(D^0 \to \ell^- \bar{\nu} K^{+(*)}) + \Gamma(\bar{D}^0 \to \ell^+ \nu K^{-(*)})}$$


M. Blanke The Charm of the Littlest Higgs with T-Parity

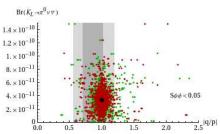
BBBR

Correlation between various CP-Asymmetries


example: time-dependent CP-asymmetry in $D
ightarrow K_S \phi$

$$\frac{\Gamma(D^0(t) \to K_S \phi) - \Gamma(\bar{D}^0(t) \to K_S \phi)}{\Gamma(D^0(t) \to K_S \phi) + \Gamma(\bar{D}^0(t) \to K_S \phi)} \equiv S_{D \to K_S \phi} \frac{t}{2\tau_D}$$

- strong correlation with a_{SL}
- its violation would signal direct CP-violation


Relation to B and K Physics

BBBR

large CP-violating effects in both $B_s-\bar{B}_s$ and $D^0-\bar{D}^0$ unlikely

simultaneous large CP-violating effects in both $D^0 - \bar{D}^0$ and rare K_L decays possible

Main Messages from LHT Charm Physics

- LHT dynamics can lead to sizable CP-violating effects in $D^0 \overline{D}^0$ mixing, although constrained from ε_K data
- **a** $\Delta C = 2$ **CP-violating observables** are strongly **correlated** among each other
- **O correlation with** *K* and *B* physics observables:

large CP-violating effects in $D^0 - \overline{D}^0$ • unlikely if $S_{\psi\phi} \gg (S_{\psi\phi})_{SM}$ • possible together with large $Br(K_L \to \pi^0 \nu \overline{\nu})$