B Tagging @ SuperB

Vincenzo Lombardo

INFN Milano

16 April 2009

Y(45)

			114		
Observable	B Factories (2 ab^{-1})	Super B (75 ab ⁻¹)	$ V_{cb} $ (exclusive)	4% (*)	$1.0\% \ (*)$
$\sin(2\beta) \; (J/\psi K^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)
$\cos(2\beta) \; (J/\psi \; K^{*0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)
$\sin(2\beta) \; (Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0%~(*)
$\cos(2\beta) \; (Dh^0)$	0.20	0.04			
$S(J/\psi \pi^0)$	0.10	0.02	${\cal B}(B o au u)$	20%	4% (†)
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B o \mu u)$	visible	5%
$S(\phi K^0)$	0.13	0.02 (*)	$\mathcal{B}(B o D au u)$	10%	2%
$S(\eta' K^0)$	0.05	0.01 (*)	J(D / D / V)	1070	270
$S(K_s^0K_s^0K_s^0)$	0.15	0.02 (*)	10 / D	15%	207 (4)
$S(K_g^0\pi^0)$	0.15	0.02 (*)	$\mathcal{B}(B o ho\gamma)$		3% (†)
$S(\omegaK^0_s)$	0.17	$0.03 \ (*)$	$\mathcal{B}(B o\omega\gamma)$	30%	5%
$S(f_0K_s^0)$	0.12	$0.02 \ (*)$	$A_{CP}(B o K^*\gamma)$	0.007 (†)	0.004 († *)
			$A_{CP}(B o ho\gamma)$	~ 0.20	0.05
$\gamma \; (B o DK, D o CP ext{ eigenstate})$	es) ~ 15°	2.5°	$A_{CP}(b o s\gamma)$	$0.012 (\dagger)$	0.004 (†)
$\gamma \ (B \to DK, D \to \text{suppressed st})$	ates) $\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow(s+d)\gamma)$	0.03	0.006 (†)
$\gamma \; (B o DK, D o ext{multibody sta})$	ates) $\sim 9^{\circ}$	1.5°	$S(K_S^0\pi^0\gamma)$	0.15	$0.02 \; (*)$
$\gamma\;(B o DK, ext{combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$	$S(ho^0\gamma)$	possible	0.10
$lpha\;(B o\pi\pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^*\ell\ell)$	7%	1%
$\alpha\;(B o ho ho)$	$\sim 7^{\circ}$	1-2° (*)	$A^{FB}(B o K^*\ell\ell)s_0$	25%	9%
$\alpha \ (B o ho \pi)$	∼ 12°	2°	$A^{FB}(B o X_s\ell\ell)s_0$	35%	5%
α (combined)	$\sim 6^{\circ}$	1-2° (*)	$\mathcal{B}(B o K u \overline{ u})$	visible	20%
			,	ATSTOLE	
$2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, D^{\pm}K_s^0\pi^{\mp})$	20°	5°	${\cal B}(B o\pi uar u)$		possible

B Flav Tagging

Determination of the flavour of the neutral B meson

The effective tagging efficiency:

$$Q = \epsilon (1-2w)^2 \qquad \text{a mistag fraction} \\ \text{ϵ tagging efficiency}$$

depends on:

- SuperB acceptance of the Detector
- SuperB PID Performance
- Tagging Algorithm

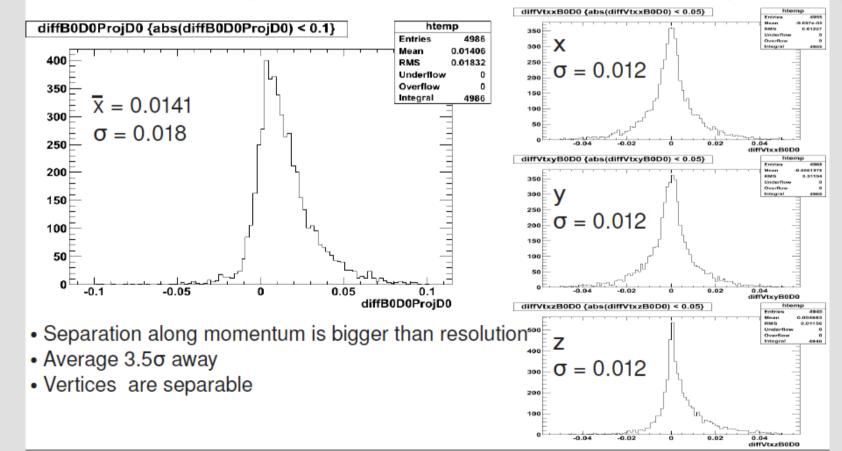
From BaBar to SuperB

Preliminary SBTag:

- (1) reuses core of the B tagging code from Babar
- (2) reuses the NN infrastucture of Tag08 (mostly the same but some inputs and/or subtaggers can change)
- (3) relies on available "SuperB" muon, elector and kaon selectors
- (4) revises tightness of PID selection to optimize B flav-tag performance (second step)
- (5) produces the NN output for analyses (third step)

B/D Vertex Separation

(D° - B°) Vertex Separation


Lawrence Berkeley Laboratory
University of California Berkeley

Dave Brown Aritoki Suzuki

- Study if its possible to distinguish B° and D° vertex
 - → Plot vertex position difference in direction of momentum of D°

Vertex difference along D0 momentum

Vertex difference along x-y-z

B Tagging Code

- Moved to FastSim/V0.0.4
- dE/dx and new PID should be available in 2 weeks
- Waiting for reliable PID selector to create useful BTagging lists to test as input to NN
- Adapting the core of the BaBar B Tagging code to use it with FastSim.
- Two packages will contain the reconstruction code, the variables needed to train the NN and the NN output to be used by analysts.

-PacBTaggingUser (PacTagUserApp)

-PacBTaggingTools (variables input to NN, definition of the BTagging lists, etc..)

Input to NN

- check if we can run the adapted code on B-> $\pi\pi$ MC events and dump the discriminating variables required as input to the NN
- not interested in training the NN at this stage, we just need that the adapted code for FastSim works
- when reliable PID selectors will be available -> training NN

Tag name	Network arch.	Discriminating variables	Training target
Electron	4:12:1	$p^*, E_{90}^W, \cos \theta_{miss}, q$	Classify B^0 versus \overline{B}^0
Muon	4:12:1	$p^*, E_{90}^W, \cos \theta_{miss}, q$	Classify B^0 versus \overline{B}^0
KinLep	3:3:1	$p^*, E_{90}^W, \cos \theta_{miss}$	Recognize leptons from direct decays
Kaon	5:10:1	$K1, K2, K3, nK_s, \Sigma P_t$	Classify B^0 versus \overline{B}^0
SlowPion	3:10:1	$p^*, \cos \theta_{thrust}, \mathcal{L}_K$	Recognize true slow pions
MaxPstar	3:6:1	$p^*, doca_{xy}, \cos \theta$	Recognize fast tracks
KPi	3:10:1	Kaon tag, SlowPi tag, $\cos \theta_{k,\pi}$	Recognize pairs of true kaons and slow pions
FSC	6:12:1	$_{\text{COS}SlowFast}$, p_{Slow}^* , p_{Fast}^* , $_{\text{COS}SlowThrust}$, $_{\text{COS}FastThrust}$, $_{\text{LKSlow}}$	Recognize fast-slow correlated tracks
Lambda	6:14:1	$M_{\Lambda}, \chi^2, \cos \theta,$ flight length, p_{Λ}, p_{proton}	Recognize lambda decays
Tag04/Tag08	10:20:1	All af the above tags	Classify B^0 versus \overline{B}^0

We can dump just the discriminating variabes we need and/or add other variables (B-D vertex separation for example)

B Tagging Lists

PID selectors and criteria for the BaBar B Tagging lists in BaBar are in BetaPid/PidTaggingMicroSequence.tcl, .cc, .hh, moved in the PacBtagging packages.

	SBTag	Crit.	Tag08	Crit
Muon	?	?	PidMuonBDTSelector	LFR
Electron	?	?	PidKMSelector	L
Kaon	?	?	PidKaonBDTSelector +KKM SuperLoose	NP

• Example selectors written:

PacPidFirstElectronSelector
PacPidFirstKaonSelector
PacPidFirstPionSelector
PacPidTruthBasedSelector
PacPidTruthBasedSelector
PacPidTruthBasedSelector

• LH'-type selectors
PID barrel (DIRC) only so far
Need tuning/code improvement
Need tuning/code improvement

To do List

- -Adapte the B tagging code of BaBar for FastSim (work in progress)
- Use available "SuperB" PID Selectors to create the B Tagging Lists without any optimization on the tightness criteria
- Generate and reconstruct the usual MC events used to train the NN architecture of BaBar.
- Check if we can dump all the required variables to be used as input to the NN.
- Check if they look reasonable.