Report from WG-A Emi KOU (LAL Orsay/IN2P3)

on behalf of the WG-A conveners M. Blanke, M. Ciuchini, F. Porter, L. Silvestrini, C. Tarantino

WG-A: Phenomenology

- Our task: discussing new physics signals at SuperB
 - Currently we are exploring the following models:
 - (A) MSSM
 - (B) SUSY-GUTs (together with MSSM, could be simply SUSY)
 - (C) Little Higgs model (LHT)
 - (D) Extra-Dimension model
 - (E) CKM analysis
 - (F) Model independent/Effective theory approach

More new physics signals with SuperB are welcome!

Towards the next meeting...

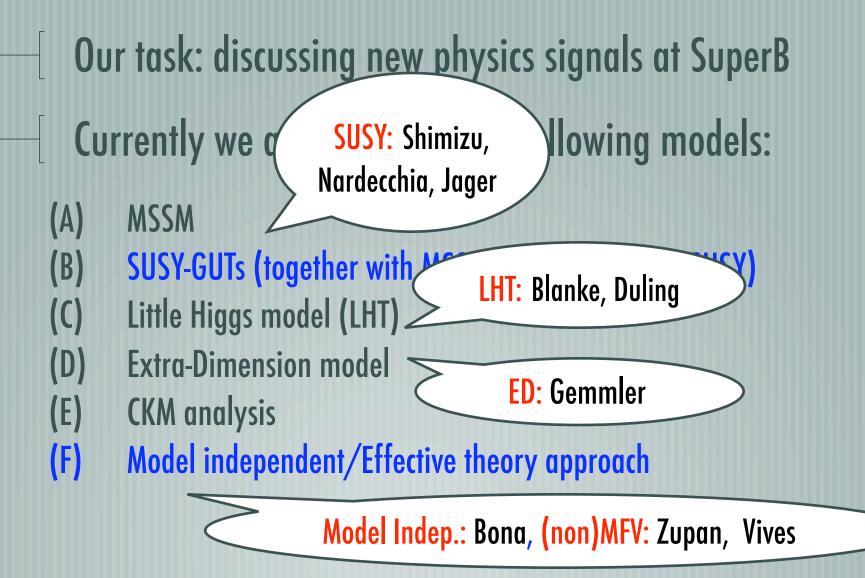
SuperB sensitivity information

In order to stimulate theoretical works around SuperB, we propose to open a web-site to put up-to-date information of the SuperB sensitivity studies (and related issues).

Observable	B Factories (2 ab ⁻¹)	SuperB (7 Observable	B Factories (2 ab^{-1})	Super B (75 ab	
$\sin(2eta)~(J/\psi~K^0)$	0.018	$0.005~(\mathcal{B}(B ightarrow au u)$	20%	4% (†)	
$\cos(2eta)~(J/\psi~K^{*0})$	0.30	$^{0.05} \mathcal{B}(B \to \mu\nu)$	$S(\phi K^0)$	0.13	$0.02 \; (*)$
$\sin(2eta)~(Dh^0)$	0.10	$rac{0.02}{0.04} \mathcal{B}(B ightarrow D au u)$	$S(\eta' K^0)$	0.05	0.01 (*)
$\cos(2eta)~(Dh^0)$	0.20		$S(K^0_S K^0_S K^0_S)$	0.15	0.02 (*)
$S(J/\psi \pi^0)$	0.10	$rac{0.02}{0.03} \ {\cal B}(B o ho \gamma)$	$S(K_s^0\pi^0)$	0.15	0.02 (*)
$S(D^+D^-)$	0.20	${\cal B}(B o \omega\gamma)$	$S(\omega K_s^0)$	0.17	0.03(*)
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$		$S(f_0K_s^0)$	0.12	92 (*)
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	${}_{1}A_{CP}(B \to K^*\gamma)$	0.00		
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	$A_{CP}(B \to \rho \gamma)$	~ 0.20	😸 polari	ization of
α (combined)	$\sim 6^{\circ}$	$_1A_{C\!P}(b o s\gamma)$	0.012 (†)	S hoiai	
$\gamma (B \to DK, D \to CP \text{ eige})$	$\sim 15^{\circ}$	$A_{C\!P}(b ightarrow (s+d) \gamma)$	0.03	$R \rightarrow I$	(* vv
$\gamma (B \to DK, D \to \text{suppres})$	/	$S(K^0_s\pi^0\gamma)$	0.15		· · · /
$\gamma (B \rightarrow DK, D \rightarrow \text{suppress})$ $\gamma (B \rightarrow DK, D \rightarrow \text{multibo})$,	$S(ho^0\gamma)$	(exclusive)		1.0% (*)
	<i>, ,</i>	Vet	(inclusive)	1%	0.5% (*)
$\gamma \ (B \to DK, \text{ combined})$	$\sim 6^{\circ}$	$A_{CP}(B \to K^* \ell \iota \mid V_u)$	b (exclusive)	8% (*)	3.0% (*)
		$A^{FB}(B o K^* \ell \ell) s_0$	_b (inclusive) 25%	8% (*) 9%	2.0% (*)

B physics @ U(4S)

As in CDR, some updated on Valencia


Observable	B Factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})	Observable	B Factories	
$\sin(2eta) \; (J/\psi \; K^0)$	0.018	0.005 (†)			Slides from
$\cos(2eta)~(J/\psi~K^{*0})$	0.30	0.05	$\mathcal{B}(B o au u)$	20	A. Sticchi
$\sin(2eta)~(Dh^0)$	0.10	0.02	${\cal B}(B o \mu u)$	visib	
$\cos(2eta)~(Dh^0)$	0.20	0.04	$\mathcal{B}(B \to D \tau \nu)$	1070	2%
$S(J/\psi \pi^0)$	0.10	0.02			
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B o ho \gamma)$	15%	3% (†)
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	${\cal B}(B ightarrow\omega\gamma)$	30%	5%
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A_{CP}(B o K^* \gamma)$	0.007 (†)	0.004 († *)
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	2°			
α (combined)	$\sim 6^{\circ}$	1-2° (*)	$A_{CP}(B \to \rho \gamma)$	~ 0.20	0.05
$\gamma (B \to DK, D \to CP \text{ eigenstates})$	s) $\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s \gamma)$	0.012 (†)	0.004 (†)
$\gamma (B \rightarrow DK, D \rightarrow \text{suppressed sta})$	1	2.0°	$A_{C\!P}(b ightarrow(s+d)\gamma)$	0.03	0.006 (†)
$\gamma (B \rightarrow DK, D \rightarrow \text{multibody star})$,	1.5°	$S(K^0_s\pi^0\gamma)$	0.15	0.02 (*)
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{S}\pi^{\mp})$	20 ⁰	50			
			$A_{CP}(B \to K^*\ell\ell)$	7%	1%
$S(\phi K^0)$	0.13	0.02 (*)	$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%
$S(\eta' K^0)$	0.05	0.01 (*)	$A^{FB}(B \to X_s \ell \ell) s_0$	35%	5%
$S(K^0_{\mathcal{S}}K^0_{\mathcal{S}}K^0_{\mathcal{S}})$	0.15	$0.02\;(*)$	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$S(K^0_{_S}\pi^0)$	0.15	$0.02\;(*)$,	VISIDIE	
$S(\omega K^0_s)$	0.17	$0.03\;(*)$	$\mathcal{B}(B \to \pi \nu \bar{\nu})$		possible
$S(f_0K^0_{s})$	0.12	$0.02\;(*)$			
V _{cb} (exclusive)	4% (*)	1.0% (*)		Possible also	at LHCb
$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)		1 0551010 0150	
$ V_{ub} $ (exclusive)	8% (*)	3.0% (*)		Similar precisio	n at I HCb
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)		Sinnar precisic	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	τ physics	_		Charm a	t U(4S) and th	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Process	s Sensitivit	— v	Mode	Observa	ble <i>B</i> Factories	Slides fror
$ \begin{array}{c} B(\tau \rightarrow e \gamma) & 2 \times 10^{-9} \\ \hline \mathcal{B}(\tau \rightarrow \mu \mu \mu) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow \mu \mu \mu) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e e e) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e e) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 4 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta) & 6 \times 10^{-10} \\ \hline \mathcal{B}(\tau \rightarrow e \eta)$	$\overline{\mathcal{B}(\tau \rightarrow $		<u> </u>		001		A. Sticchi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 17		$D \rightarrow K \pi$			
$ \begin{array}{c} \mathcal{B}(\tau \to eee) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \to \mu\eta) & 4 \times 10^{-10} \\ \mathcal{B}(\tau \to e\eta) & 6 \times 10^{-10} \\ \mathcal{B}(\tau \to \ell K_s^0) & 2 \times 10^{-10} \\ \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_s^0) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_s^0) &$, v	.,		$D^0 \rightarrow K^0_s \pi^4$	$\pi^- y_D$	23×10^{3}	$5 imes 10^{-1}$
$\begin{array}{c} \mathcal{B}(\tau \to eee) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \to \mu\eta) & 4 \times 10^{-10} \\ \mathcal{B}(\tau \to e\eta) & 6 \times 10^{-10} \\ \mathcal{B}(\tau \to \ell K_s^0) & 2 \times 10^{-10} \\ \end{array}$ $\begin{array}{c} \mathcal{B}(\tau \to \ell K_s^0) & 2 \times 10^{-10} \\ \mathcal{B}(\tau \to \ell K_s^0) & 2 \times 10^{-10} \\ \end{array}$ $\begin{array}{c} \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \end{array}$ $\begin{array}{c} \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \end{array}$ $\begin{array}{c} \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \end{array}$ $\begin{array}{c} \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \end{array}$ $\begin{array}{c} \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \end{array}$ $\begin{array}{c} \mathcal{B}_{\sigma} \to \ell K_s^0 & 2 \times 10^{-10} \\ \mathcal{B}_{\sigma} \to \ell K_s$	$\mathcal{B}(\tau \rightarrow$	$\mu\mu\mu\mu$) 2×10^{-10}			x_D		
$ \begin{array}{c} x_{D} & 2^{-3 \times 10^{-1}} & 3 \times 10^{-1} \\ \mathcal{B}(\tau \to \mu\eta) & 4 \times 10^{-10} \\ \mathcal{B}(\tau \to e\eta) & 6 \times 10^{-10} \\ \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \end{array} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau \to \ell K_{s}^{0}) & 2 \times$	$\mathcal{B}(au ightarrow$	<i>eee</i>) 2×10^{-10}		Average	-		
$ \begin{array}{c} & \mathcal{B}(\tau \to e\eta) & 6 \times 10^{-10} \\ & \mathcal{B}(\tau \to \ell K_s^0) & 2 \times 10^{-10} \\ \hline \mathcal{B}(\tau$	• ·			$D^0 = V^+$		$2-3 \times 10^{-3}$	
$ \begin{array}{c} \begin{array}{c} B_{1} (\tau \rightarrow \ell K_{S}^{0}) & 2 \times 10^{-10} \\ \hline B_{1} (\tau \rightarrow \ell K_{S}^{0}) & 2 \times 10^{-10} \\ \hline B_{1} (\tau \rightarrow \ell K_{S}^{0}) & 2 \times 10^{-10} \\ \hline \end{array} \\ \begin{array}{c} D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} & x & at LHCb \\ D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} & x & at LHCb \\ \hline \end{array} \\ \begin{array}{c} y \\ y \\ q/p \\ \phi \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} 3 \times 10^{-1} \\ 2^{0} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \\ \hline \end{array} $ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\	· ·	,					$7 imes 10^{-}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		• ,				To be evaluated	
$\begin{array}{c} q/p & 3 \times 10^{-1} \\ 0 & 2^{\circ} \\ \hline \\ B_{s} \text{ at } U(5S) \\ \hline \\ \hline \\ Observable & Error with 1 ab^{-1} & Error with 30 ab^{-1} \\ \hline \\ \Delta \Gamma & 0.16 \text{ ps}^{-1} & 0.03 \text{ ps}^{-1} \\ \hline \\ \Gamma & 0.07 \text{ ps}^{-1} & 0.01 \text{ ps}^{-1} \\ \hline \\ B_{s} \text{ from angular analysis } 20^{\circ} & 8^{\circ} \\ A_{SL}^{*} & 0.006 & 0.004 \\ \hline \\ A_{CH} & 0.004 & 0.004 \\ \hline \\ B(B_{s} \rightarrow \mu^{+}\mu^{-}) & - & <8 \times 10^{-9} \\ \hline \\ V_{ul}/V_{ts} & 0.08 & 0.017 \\ B(B_{s} \rightarrow \gamma\gamma) & 38\% & 7\% \\ B_{s} \text{ from } B_{s} \rightarrow K^{0}\overline{K}^{0} & 24^{\circ} & 11^{\circ} \\ \hline \\ B_{s}^{*} \text{ in ot discussed today. Maybe to be} \end{array} \right) \\ \hline \\ $	$\mathcal{B}(au ightarrow$	$\ell K_s^0) = 2 \times 10^{-10}$		$D^{\circ} \rightarrow K_{S}^{\circ} \pi^{+} \pi$		at LHCb	3.5×10^{-10}
ObservableError with 1 ab ⁻¹ Error with 30 ab ⁻¹ $\Delta\Gamma$ 0.16 ps ⁻¹ 0.03 ps ⁻¹ Γ 0.07 ps ⁻¹ 0.01 ps ⁻¹ β_s from angular analysis20°8° A_{SL}^* 0.0060.004 A_{CH} 0.0040.004 $B(B_s \rightarrow \mu^+\mu^-)$ -< 8 × 10 ⁻⁹ $ V_{td}/V_{ts} $ 0.080.017 $B(B_s \rightarrow \gamma\gamma)$ 38%7% β_s from $B_s \rightarrow K^0 \bar{K}^0$ 24° B_s : not discussed today. Maybe to be $D^+ \rightarrow \pi^-e^+e^+, D^+ \rightarrow K^-e^+e^+$		B_s at U(5S) —		_	φ		
ObservableError with 1 ab * Error with 30 ab * $\Delta\Gamma$ 0.16 ps^{-1}0.03 ps^{-1} Γ 0.07 ps^{-1}0.01 ps^{-1} β_s from angular analysis20°8° A_{SL}^{\star} 0.0060.004 A_{CH} 0.0040.004 $B(B_s \rightarrow \mu^+ \mu^-)$ -< 8 × 10^{-9}							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
β_s from angular analysis 20° 8° A_{SL}° 0.006 0.004 A_{CH}° 0.004 0.004 $B(B_s \to \mu^+ \mu^-)$ $ < 8 \times 10^{-9}$ $ V_{td}/V_{ts} $ 0.08 0.017 $B(B_s \to \gamma\gamma)$ 38% 7% β_s from $J/\psi\phi$ 16° 6° β_s from $B_s \to K^0 \bar{K}^0$ 24° 11° B_s : not discussed today. Maybe to be D° $K_s^{\circ}e^+e^+$ 1×10^{-8}	<u>\</u>				$D^0 \rightarrow \eta e^+ e^-$	$, D^0 \rightarrow \eta \mu^+ \mu^-$	$3 imes 10^{-8}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	from angular analy		<u>^</u>			/ 3/ /	$3 imes 10^{-8}$
A_{CH} 0.0040.004 $B(B_s \to \mu^+\mu^-)$ -< 8 × 10^{-9} $ V_{td}/V_{ts} $ 0.080.017 $B(B_s \to \gamma\gamma)$ 38%7% $B(B_s \to \gamma\gamma)$ 38%7% β_s from $J/\psi\phi$ 16° β_s from $B_s \to K^0 \bar{K}^0$ 24° B_s : not discussed today. Maybe to be $D^+ \to \pi^- e^+ e^+, D^+ \to K^- e^+ e^+$					$D^+ \to \pi^+ e^+ e^+ e^+ e^+ e^+ e^+ e^+ e^+ e^+ e$	$e^-, D^+ \rightarrow \pi^+ \mu^+ \mu^-$	1×10^{-8}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1×10^{-8}
$ \begin{array}{ccccc} V_{td}/V_{ts} & 0.08 & 0.017 \\ \mathcal{B}(B_s \to \gamma\gamma) & 38\% & 7\% \\ \mathcal{B}_s \ \text{from} \ J/\psi\phi & 16^\circ & 6^\circ \\ \mathcal{B}_s \ \text{from} \ B_s \to K^0 \bar{K}^0 & 24^\circ & 11^\circ \end{array} \\ \end{array} $		-	$< 8 \times 10^{-9}$				
$ \begin{array}{cccc} \mathcal{B}(B_s \to \gamma \gamma) & 38\% & 7\% \\ \overline{\beta_s \text{ from } J/\psi \phi} & 16^{\circ} & 6^{\circ} \\ \overline{\beta_s \text{ from } B_s \to K^0 \bar{K}^0} & 24^{\circ} & 11^{\circ} \end{array} \end{array} \qquad \begin{array}{cccc} D^0 \to \eta e^{\pm} \mu^{\mp} & 3 \times 10^{-8} \\ D^0 \to K_s^0 e^{\pm} \mu^{\mp} & 3 \times 10^{-8} \\ D^0 \to K_s^0 e^{\pm} \mu^{\mp} & 3 \times 10^{-8} \end{array} \\ \begin{array}{cccc} D^+ \to \pi^- e^+ e^+, D^+ \to K^- e^+ e^+ & 1 \times 10^{-8} \\ D^+ \to \pi^- \mu^+ \mu^+, D^+ \to K^- \mu^+ \mu^+ & 1 \times 10^{-8} \end{array} $	V_{td}/V_{ts}	0.08	0.017				
$\begin{array}{cccc} \beta_s \text{ from } J/\psi\phi & 16^{\circ} & 6^{\circ} \\ \beta_s \text{ from } B_s \to K^0 \bar{K}^0 & 24^{\circ} & 11^{\circ} \end{array} \qquad \qquad D^0 \to K_s^0 e^{\pm} \mu^{\mp} & 3 \times 10^{-8} \\ \hline D^+ \to \pi^- e^+ e^+, D^+ \to K^- e^+ e^+ & 1 \times 10^{-8} \\ \hline D^+ \to \pi^- \mu^+ \mu^+, D^+ \to K^- \mu^+ \mu^+ & 1 \times 10^{-8} \end{array}$	${\cal B}(B_s o \gamma \gamma)$	38%	7%		,		
$\frac{D^+ \to \pi^- e^+ e^+, \ D^+ \to K^- e^+ e^+}{D^+ \to \pi^- \mu^+ \mu^+, \ D^+ \to K^- \mu^+ \mu^+} 1 \times 10^{-8}$							
B_s : not discussed today. Maybe to be	B_s from $B_s \to K^0 \bar{K}^0$	24°	11°				
						· · · · · · · · · · · · · · · · · · ·	
	Ŭ						

Mini-study group on Benchmark

- In this workshop, we didn't get to a conclusion about the benchmark for flavour physics.
 - Many questions remained: shall we have one or not? If yes, how to proceed? What is the use of the benchmark?
 - In any case, better to start looking into it. We propose to have a mini-study group to get started (e.g. using wiki). Volunteers are most welcome!

WG-A: Phenomenology

Why SUSY? Why SUSY?

$$\label{eq:main_seesaw} \begin{split} \text{hierarchy} & M_W \ll M_{\text{Pl}} \sim M_{\text{seesaw}} \sim M_{\text{GUT}} \\ \text{stabilized} \end{split}$$

improved unification of couplings

(thermal relic) dark matter candidate, baryogenesis, strings, ...

EW symmetry breaking is SUSY breaking effect SUSY nonrenormalization theorem forces this to be either tree level or nonperturbative = $\mathcal{O}(e^{-c/g^2(\mu)}) = \mathcal{O}((\Lambda/\mu)^{c'})$

disfavoured (mass sum rules etc) hierarchy generated, not only stabilized

 $\begin{array}{c|c|c|c|c|c|c|c|c|} \hline M_{PI} & M_{GUT} & M_{mess} & \Lambda & M_{sparticle} \sim M_{EW} \\ \hline M_{sparticle}, M_{EW} = O(\Lambda^2/M_{mess}) \end{array}$

Hierarchical Soft Terms

talk by M. Nardecchia

Motivations: [Effective SUSY, Choen Kaplan Lepeintre Nelson '97]

Complementary to degenerate assumption If we start with a degenerate boundary condition at very high energy, we end up to a split situation at low energy because of the Yukawa coupling of the 3rd family Welcome to alleviate the SUSY problem

$$A(\Delta F = 1) = f(x)\hat{\delta}_{ij}$$
$$A(\Delta F = 2) = g^{(1)}(x)\hat{\delta}_{ij}^2$$

There are only 4 flavor violating insertions:

 $\hat{\delta}_{bd}^{LL}, \hat{\delta}_{bd}^{LL}, \hat{\delta}_{bd}^{RR}, \hat{\delta}_{bd}^{RR}$

$$c = \frac{\tilde{m}_3^2}{M^2} \qquad \qquad \hat{\delta}_{a3} = \frac{\mathcal{M}_{a3}^2}{\tilde{m}_h^2}$$

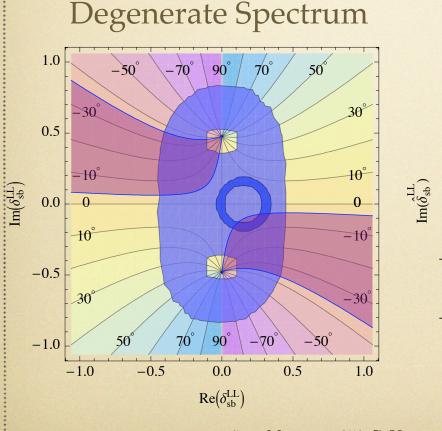
$$\hat{\delta}_{ij}^{LL} \equiv \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{LL*}$$

$$\hat{\delta}_{ij}^{LR} \equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{RR*} \qquad i, j = 1, 2$$
$$\hat{\delta}_{i3}^{LR} \equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL}.$$

Correlations in the two frameworks can be very different:

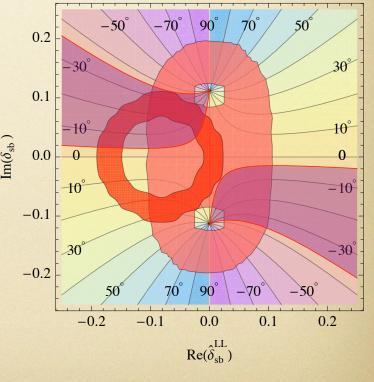
$$\frac{A(\Delta F=2)}{[A(\Delta F=1)]^2}\Big|_{\text{degenerate}} = \frac{g^{(3)}}{6g^{(1)}} \left(\frac{f}{f^{(1)}}\right)^2 \left.\frac{A(\Delta F=2)}{[A(\Delta F=1)]^2}\right|_{\text{hierarchical}}$$

Provide some prediction for the mass insertion $\delta^\prime s$

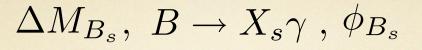

 $\left|\hat{\delta}_{sb}\right| \approx \left|V_{ts}^*\right| \approx 4 \times 10^{-2}$

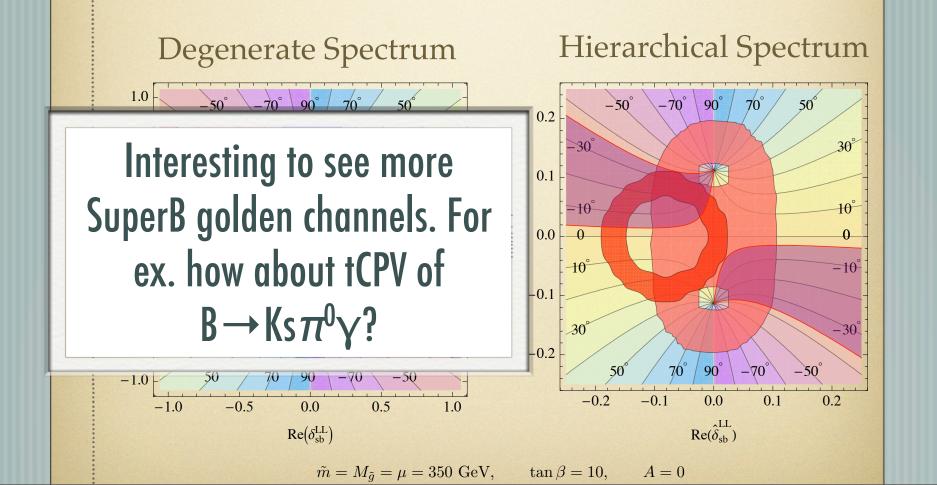
M. Nardecchia

 $\left|\hat{\delta}_{db}\right| \approx \left|V_{td}^*\right| \approx 8 \times 10^{-3}$


$$\left|\hat{\delta}_{db}\hat{\delta}_{bs}\right|\approx 3\times 10^{-4}$$

Significant difference comparing to the usual degenerate case in ΔMs , $B \rightarrow Xs\gamma$, φs .


Hierarchical Spectrum


M. Nardecchia

 $\tilde{m} = M_{\tilde{g}} = \mu = 350 \text{ GeV}, \qquad \tan \beta = 10, \qquad A = 0$

talk by M. Nardecchia

Why SUSY? Why SUSY?

$$\label{eq:main_seesaw} \begin{split} \text{hierarchy} & \\ M_W \ll M_{\text{Pl}} \sim M_{\text{seesaw}} \sim M_{\text{GUT}} \\ \text{stabilized} \end{split}$$

improved unification of couplings

talk by

S. Jager

(thermal relic) dark matter candidate, baryogenesis, strings, ...

EW symmetry breaking is SUSY breaking effect SUSY nonrenormalization theorem forces this to be either tree level or nonperturbative = $\mathcal{O}(e^{-c/g^2(\mu)}) = \mathcal{O}((\Lambda/\mu)^{c'})$

disfavoured (mass sum rules etc) hierarchy generated, not only stabilized

 MPI
 MGUT
 Mmess
 Λ
 Msparticle ~ MEW

 mSUGRA
 Msparticle, M
 Anomaly, gauge mediation

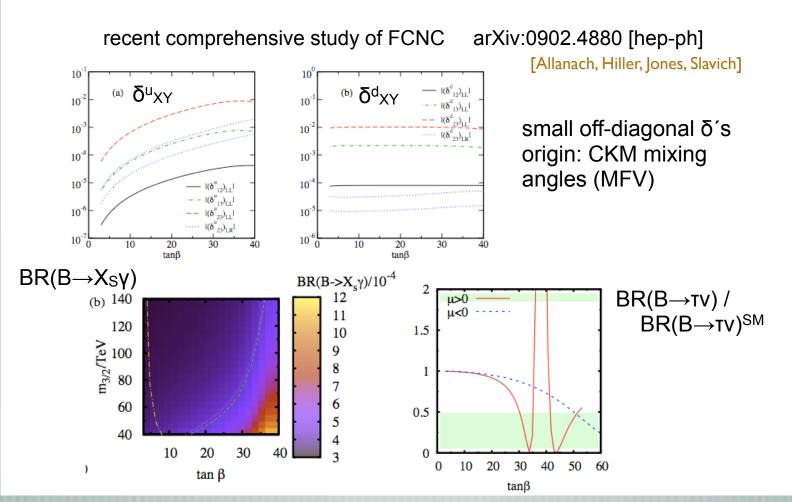
Why SUSY? Why SUSY?

$$\label{eq:main_seesaw} \begin{split} \text{hierarchy} & \\ M_W \ll M_{\text{Pl}} \sim M_{\text{seesaw}} \sim M_{\text{GUT}} \\ \text{stabilized} \end{split}$$

improved unification of couplings

talk by

S. Jager


(thermal relic) dark matter candidate, baryogenesis, strings, ...

EW symmetry breaking is SUSY breaking effect SUSY nonrenormalization theorem forces this to be either tree level or permuturbative = $\mathcal{O}(e^{-c/g^2(\mu)}) = \mathcal{O}((\Lambda/\mu)^{c'})$ Flavour hierarchy generated, disfavoured blind or not? (mass sum rules not only stabilized MPL MGUT M_{mess} $M_{\rm sparticle} \sim M_{\rm EW}$ Λ M_{sparticle}, M **mSUGRA** Anomaly, gauge mediation

talk by

S. Jager

Anomaly mediation

SUSY SU(5) GUT with right-handed neutrinos Quarks and leptons are unified talk by Y. Shimizu

$$W = \frac{1}{4} Y_{ij}^{u} 10_{i} 10_{j} 5_{H} + \sqrt{2} Y_{ij}^{d} 10_{i} \overline{5}_{j} \overline{5}_{H} + Y_{ij}^{\nu} \overline{5}_{i} \overline{N}_{j} 5_{H} + M_{Nij} \overline{N}_{i} \overline{N}_{j},$$

 $\mathbf{10}_i = (Q, \overline{U}, \overline{E})_i, \ \overline{\mathbf{5}}_i = (\overline{D}, \underline{L})_i, \mathbf{5}_H = (H_C, H_2), \ \overline{\mathbf{5}}_H = (\overline{H}_C, H_1)$

Even if the universality is assumed at the planck scale, flavor mixing is induced for squarks/sleptons.

'86 Borzmati,Masiero, '95,'96,'99 Hisano et al,

$$10 10 10 \overline{5}_{H} \overline{Y^{U}} \overline{5}_{H} \overline{Y^{U}}$$

$$\frac{\overline{5}}{Y^{\nu}} \qquad N \\ 5_{H} \qquad Y^{\nu}$$

 $\mathbf{10} = (Q, \bar{U}, \bar{E})$ CKM mixing $\mathbf{\bar{5}} = (\bar{D}, L)$ MNS mixing

Immediately provide a correlations...

SU

$$B(\tau \to \mu \gamma) \approx c |(\delta_{LL}^{(l)})_{23}|^2 \mu^2 \tan^2 \beta$$
$$H^{B_s} \approx a(\delta_{LL}^{(d)})_{23} (\delta_{RR}^{(d)})_{23}$$

MFV, Model Independent

Model Independent

Marcella Bona	
---------------	--

New Physics frg

talk by M. Bona

UT analysis including new physics (NP)

 $C_{B_s}e^{-2i\phi_{B_s}} = \frac{\langle \overline{B}_s | H_{eff}^{SM} + H_{eff}^{NP} | B_s \rangle}{\langle \overline{B}_s | H_{eff}^{SM} | B_s \rangle} = 1 + \frac{A_{NP}e^{-2i\phi_{NP}}}{A_{SM}e^{-2i\beta_s}}$

Consider for example B_s mixing process. Given the SM am<u>plitude, we can defi</u>ne

All NP effects can be parameterized in terms of one complex parameter for each meson mixing, to be determined in a simultaneous fit with the CKM parameters (now there are enough experimental constraints to do so).

For kaons we use Re and Im, since the two exp. constraints ε_{κ} and Δm_{κ} are directly related to them (with distinct theoretical issues)

$$C_{\varepsilon_{K}} = \frac{\mathrm{Im}\left\langle K^{0} \left| H_{eff}^{full} \right| \overline{K}^{0} \right\rangle}{\mathrm{Im}\left\langle K^{0} \left| H_{eff}^{SM} \right| \overline{K}^{0} \right\rangle}$$
$$C_{\Delta m_{K}} = \frac{\mathrm{Re}\left\langle K^{0} \left| H_{eff}^{full} \right| \overline{K}^{0} \right\rangle}{\mathrm{Re}\left\langle K^{0} \left| H_{eff}^{SM} \right| \overline{K}^{0} \right\rangle}$$

SuparR Workshon - Warwick University IIK

Model Independent

talk by M. Bona

Marcella Bona

New Physics

 $C_i(\Lambda$

Testing the TeV scale

The dependence of C on Λ changes on flavor structure. we can consider different flavour scenarios:

• Generic: $C(\Lambda) = \alpha / \Lambda^2$ • NMFV: $C(\Lambda) = \alpha \times |F_{SM}| / \Lambda^2$ • MFV: $C(\Lambda) = \alpha \times |F_{SM}| / \Lambda^2$ • MFV: $C(\Lambda) = \alpha \times |F_{SM}| / \Lambda^2$ • $F_1 \sim |F_{SM}|$, $F_{i\neq 1} \sim 0$, SM phase

 α (L_i) is the coupling among NP and SM

 $\odot \alpha \sim 1$ for strongly coupled NP

 α ~ α_w (α_s) in case of loop coupling through weak (strong) interactions

F_{sM} is the combination of CKM factors for the considered process

If no NP effect is seen lower bound on NP scale Λ if NP is seen upper bound on NP scale Λ

Model indepenent

talk by M. Bona

New Pr

Upper and lower bound on the scale

arcella Bona

Lower bounds on NP scale from K and B₄ physics (in TeV at 95% prob.)

Scenario	strong/tree	α_s loop	α_W loop
MFV	5.5	0.5	0.2
NMFV	62	6.2	2
General	24000	2400	800

Upper bounds on NP scale from B_s:

Scenario	$\mathrm{strong}/\mathrm{tree}$	α_s loop	α_W loop
NMFV	35	4	2
General	800	80	30

- the general case was already problematic (well known flavour puzzle)
- NMFV has problems with the size of the B_s effect vs the (insufficient) suppression in B_d and (in particular) K mixing
- MFV is OK for the size of the effects, but the B_s phase cannot be generated

Data suggest some hierarchy in NP mixing which is stronger than the SM one

NP scale ∧ (TeV) 00 00 00 00 00

104

 10^{3}

Re C

Im C

SuperB Workshop – Warwick University.

Non-Minimal Flavour Violation

Z. Jure

Motivation

two questions

- Y_u, Y_d have O(1) eigenvalues $y_{t,b}$, why are we able to expand $\bar{Q}f(\epsilon_u Y_u, \epsilon_d Y_d)Q$?
 - if $\epsilon_{u,d} \ll 1$: series truncates after first few terms \Rightarrow

Linear MFV \Rightarrow expansion in $Y_{u,d}$

- if $\epsilon_{u,d} = O(1)$: higher terms important \Rightarrow Nonlinear MFV \Rightarrow need to reorganize expansion
- can we distinguish LMFV vs. NLMFV?
 - interesting since $\epsilon_{u,d} \propto \log(\mu_W/\Lambda_F) \Rightarrow$ could give a handle on physics at higher scales (with caveats)

Non-Minimal Flavour Violation

- enhancements for CPV in $D \overline{D}$ mixing
 - relevant operators: $(\overline{\tilde{u}}_{L}^{(2)}\chi\chi^{\dagger}u_{L})^{2}$, $(\overline{\tilde{u}}_{L}^{(2)}\chi\chi^{\dagger}u_{L})(\overline{\tilde{u}}_{L}^{(2)}\phi_{d}\phi_{d}^{\dagger}u_{L})$
 - resulting CP violation in mixing $\arg(M_{12}/\Gamma_{12}) = O(5\%) (1 \text{ TeV}/\Lambda)^2 (\sin 2\gamma, \sin \gamma)$

$\tau \rightarrow \mu \gamma vs \mu \rightarrow e \gamma$

talk by O. Vives

 τ vs μ : where to look for new physics?

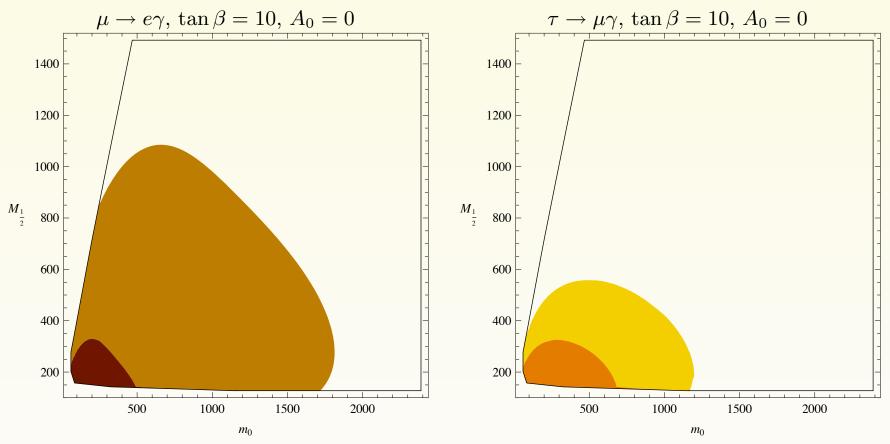
Example II: μ versus τ

• Present experimental sensitivity in μ LFV decays: $\propto BR(\mu \rightarrow e\gamma) = 10^{-11} (10^{-13})$

while in τ LFV decays:

$$\propto BR(\tau \to \mu \gamma) = 10^{-8} (10^{-9})$$

• Generically we can write $l_i \rightarrow l_j \gamma$ transitions:


$$\mathrm{BR}(l_i \to l_j \gamma) \simeq \left(\frac{M_W}{M_{NP}}\right)^4 \times |\left(\delta^l\right)_{ij}|^2 \times f(\tan\beta, \mu \ldots),$$

Interesting models determined by flavour structure: $|(\delta^l)_{i3}/(\delta^l)_{12}| \gtrsim 30 (100)$ $\tau \rightarrow \mu \gamma vs \mu \rightarrow e \gamma$

talk by O.Vives

 τ vs μ : where to look for new physics?

Lepton Flavour Violation

Brown (clear): Present (fut.) $\mu \to e\gamma$ bounds, Orange: Present (fut.) $\tau \to \mu\gamma$ bounds.

Littele Higgs and Extra Dimension

The Littlest Higgs Model with T-Parity

Arkani-Hamed, Cohen, Georgi, hep-th/0104005, hep-ph/0105239 Arkani-Hamed, Cohen, Katz, Nelson, hep-ph/0206021 Cheng, Low, hep-ph/0308199, hep-ph/0405243

Little Higgs Idea

Higgs boson as a **pseudo-Goldstone boson**

collective symmetry breaking explains smallness of its mass

• T-even quark sector:

- standard CKM mixing + mixing of T₊ with t
- T-odd mirror quark sector:

Low, hep-ph/0409025

talk by B. Duling

$$\begin{pmatrix} u_H \\ d_H \end{pmatrix} \begin{pmatrix} c_H \\ s_H \end{pmatrix} \begin{pmatrix} t_H \\ b_H \end{pmatrix} T_-$$

new CKM-like mixing matrices V_{Hu}, V_{Hd} parameterizing mirror quark interactions with SM quarks

relative size of LHT effects:

$$imes rac{1}{\lambda^{i}_{\mathsf{CKM}}} \xi^{i}_{V_{\mathit{Hd}}}$$

$$\frac{1}{\lambda_t^{(K)}} \simeq 2500$$

Small in **B** Physics?!

$$rac{1}{\lambda_t^{(d)}} \simeq 100$$

$$> \qquad rac{1}{\lambda_t^{(s)}}\simeq 25$$

Large tau to three lepton LFV decays due to the Z contribution!

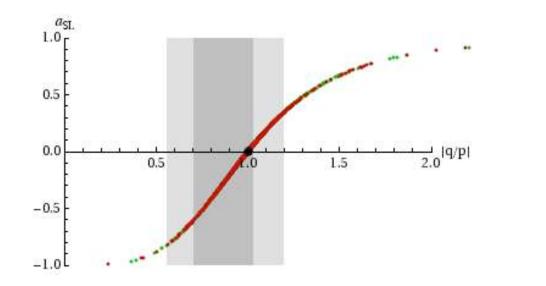
talk by

B. Duling

	LHT	MSSM
$rac{Br(\mu^- ightarrow e^- e^+ e^-)}{Br(\mu ightarrow e \gamma)}$	0.02 1	$\sim 6 \cdot 10^{-3}$
$rac{Br(au^- ightarrow e^-e^+e^-)}{Br(au ightarrow e\gamma)}$	0.04 0.4	$\sim 1 \cdot 10^{-2}$
$\frac{\textit{Br}(\tau^-\!\rightarrow\!\mu^-\mu^+\mu^-)}{\textit{Br}(\tau\rightarrow\!\mu\gamma)}$	0.04 0.4	\sim 2 \cdot 10 ⁻³ \star
$rac{Br(au^- ightarrow e^-\mu^+\mu^-)}{Br(au ightarrow e\gamma)}$	0.04 0.3	\sim 2 \cdot 10 ⁻³ \star
$rac{Br(au^- ightarrow \mu^-e^+e^-)}{Br(au ightarrow \mu\gamma)}$	0.04 0.3	$\sim 1 \cdot 10^{-2}$

* can be significantly enhanced by Higgs contributions

Paradisi, hep-ph/0508054, hep-ph/0601100


 $D^0 - \overline{D}^0$ Mixing and CP-Violation in the LHT Model

CP-Violation in $D^0 - \overline{D}^0$ Oscillations

• $\left| \frac{q}{p} \right| \neq 1$ measures CP-violation in $D^0 - \overline{D}^0$ mixing

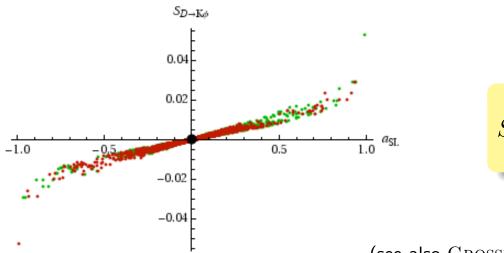
• exp. signature: asymmetry in "wrong sign" leptons

$$a_{\mathsf{SL}} = \frac{\Gamma(D^0 \to \ell^- \bar{\nu} K^{+(*)}) - \Gamma(\bar{D}^0 \to \ell^+ \nu K^{-(*)})}{\Gamma(D^0 \to \ell^- \bar{\nu} K^{+(*)}) + \Gamma(\bar{D}^0 \to \ell^+ \nu K^{-(*)})}$$

M. Blanke The Charm of the Littlest Higgs with T-Parity

talk by

M. Blanke


BBBR

 $D^0 - \overline{D}^0$ Mixing and CP-Violation in the LHT Model

Correlation between various CP-Asymmetries

example: time-dependent CP-asymmetry in $D o K_S \phi$

$\Gamma(D^0(t) \to K_S \phi) - \Gamma(\bar{D}^0(t) \to K_S \phi) = S_D$	t
$\frac{\Gamma(D^{0}(t) \to K_{S}\phi) - \Gamma(\bar{D}^{0}(t) \to K_{S}\phi)}{\Gamma(D^{0}(t) \to K_{S}\phi) + \Gamma(\bar{D}^{0}(t) \to K_{S}\phi)} \equiv S_{D \to K_{S}\phi}$	$^{\phi} \overline{2 au_D}$

 $S_{D \to K_S \phi} \simeq \frac{x_D^2 + y_D^2}{u_D} a_{\mathsf{SL}}$

talk by

M. Blanke

BBBR (see also GROSSMAN, NIR, PEREZ, 0904.0305)

- strong correlation with a_{SL}
- its violation would signal direct CP-violation

Warped ExtraD with flavour

talk by K. Gemmler

Part 1: Introduction to Warped Extra Dimensions

The Flavour problem

gauge hierarchy problem solved

• Hierarchies in masses of quarks and leptons:

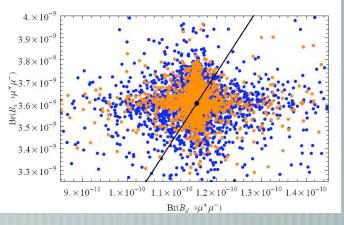
 $m_u \approx 5 \, MeV, \ldots, m_t \approx 172.5 \, GeV$

 $m_e pprox 0.5 \, MeV, \dots, m_ au pprox 1800 \, MeV$

Hierarchies in the CKM mixing:

 $|V_{ud}| \approx 1, \ldots, |V_{ub}| \approx 0.0038$

Goal: Solution to the flavour problem


• allow the SM fields to propagate in the bulk (except of the Higgs) \Rightarrow 5D fields

Warped ExtraD with flavour

Rare B decays

$$Br(B_s \rightarrow \mu^+ \mu^-)$$
 versus $Br(B_d \rightarrow \mu^+ \mu^-)$:

- The branching ratios for $B_{s,d} \rightarrow \mu^+ \mu^-$ are modified by at most 20%.
- effects are small and challenging to be measured in future experiments

talk by

K. Gemmler

Relatively new model. More signals in B physics possible. Loop computation is crucial?!