Search for decoherence and CPT violation in the B meson system at a B-factory

Antonio Di Domenico
Dipartimento di Fisica, Università di Roma “La Sapienza”
and INFN sezione di Roma, Italy

SuperB Physics Workshop
Physics Department, University of Warwick,
April 16th, 2009, UK
CPT: introduction

The three discrete symmetries of QM, C (charge conjugation), P (parity), and T (time reversal) are known to be violated in nature both singly and in pairs. Only CPT appears to be an exact symmetry of nature.

CPT theorem (Luders, Jost, Pauli, Bell 1955 -1957):
Exact CPT invariance holds for any quantum field theory (flat space-time) which assumes:
(1) Lorentz invariance  (2) Locality (3) Unitarity (i.e. conservation of probability).

Testing the validity of the CPT symmetry probes the most fundamental assumptions of our present understanding of particles and their interactions.

Extension of CPT theorem to a theory of quantum gravity far from obvious (e.g. CPT violation appears in some models with space-time foam backgrounds).

No predictive theory incorporating CPT violation => only phenomenological models to be constrained by experiments.
CPT: introduction

Consequences of CPT symmetry: equality of masses, lifetimes, $|q|$ and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems are the most intriguing systems in nature; they offer unique possibilities to test CPT invariance;

e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:

neutral K system $\frac{|m_{K^0} - m_{\bar{K}^0}|}{m_K} < 10^{-18}$

neutral B system $\frac{|m_{B^0} - m_{\bar{B}^0}|}{m_B} < 10^{-14}$

proton- anti-proton $\frac{|m_p - m_{\bar{p}}|}{m_p} < 10^{-8}$
1) “Standard” tests of CPT symmetry in the neutral B system
neutral $B$ meson system: “standard” picture

Time dependence of Quark-Flavor Oscillations given by Schrödinger equation:

\[
i \frac{\partial}{\partial t} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \mu_{ik} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} - \frac{i}{2} \begin{bmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{bmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}
\]

Effective Hamiltonian has 8 real parameters

\[
m_{ik} \text{ and } \Gamma_{ik} \text{ hermitian}
\]

If CPT holds, $m_{11} = m_{22}$, $\Gamma_{11} = \Gamma_{22}$, and

\[
B_L^0(t) = (pB^0 + q\bar{B}^0) \cdot e^{-\gamma_L t}, \quad \gamma_L = i m_L + \Gamma_L / 2,
\]

\[
B_H^0(t) = (pB^0 - q\bar{B}^0) \cdot e^{-\gamma_H t}, \quad \gamma_H = i m_H + \Gamma_H / 2.
\]

$t$: B meson proper time

Oscillation frequency $\Delta m \equiv m_H - m_L \approx 0.5 \text{ ps}^{-1}$ Well measured

Average life time $1/\Gamma \approx 1.6 \text{ ps}$ Well measured

Life time difference $\Delta \Gamma \equiv \Gamma_H - \Gamma_L \ll 1$ NOT well measured

$\Delta m/\Delta \Gamma \sim -200$ in QCD lattice calc. from A. Lusiani
CPT violation in the neutral B system: “standard” picture

If CPT violated, also two eigenstates $B_L$, $B_H$ with

$$\Delta m \equiv m_H - m_L \approx 2|M_{12}|,$$
$$\Delta \Gamma \equiv \Gamma_H - \Gamma_L \approx 2|M_{12}| \text{Re}(\Gamma_{12}/M_{12})$$

CPT and CP violation

$$m \equiv \frac{1}{2}(M_{11} + M_{22})$$
$$\Gamma \equiv \frac{1}{2}(\Gamma_{11} + \Gamma_{22})$$
$$\delta m \equiv M_{11} - M_{22}$$
$$\delta \Gamma \equiv \Gamma_{11} - \Gamma_{22}$$

T and CP violation

$$\left| \frac{q}{p} \right|^2 \approx 1 - \text{Im} \frac{\Gamma_{12}}{M_{12}}$$

Definition of $|q/p|$ as with CPT conservation, but $B_L$, $B_H$ given by $p$, $q$, and $z$

Eigenstates proper-time evolution:

$$B_L^0(t) = \left[ p \cdot \sqrt{1-z} \cdot B^0 + q \cdot \sqrt{1+z} \cdot \overline{B}^0 \right] \cdot e^{-\gamma_L t}$$
$$B_H^0(t) = \left[ p \cdot \sqrt{1+z} \cdot B^0 - q \cdot \sqrt{1-z} \cdot \overline{B}^0 \right] \cdot e^{-\gamma_H t}$$

from A. Lusiani
CPT asymmetries with inclusive dilepton events

Decay rates of neutral B meson pairs to $\ell^+\ell^+$, $\ell^-\ell^-$, and $\ell^+\ell^-$ events to first-order in $z$:

- $N^{++} \propto e^{-\Gamma|\Delta t|} |p/q|^2 \left\{ \cosh(\Delta \Gamma \Delta t/2) - \cos(\Delta m \Delta t) \right\}$
- $N^{--} \propto e^{-\Gamma|\Delta t|} |q/p|^2 \left\{ \cosh(\Delta \Gamma \Delta t/2) - \cos(\Delta m \Delta t) \right\}$
- $N^{+-} \propto e^{-\Gamma|\Delta t|} \left\{ \cosh(\Delta \Gamma \Delta t/2) + \cos(\Delta m \Delta t) - 2 \text{Re } z \sinh(\Delta \Gamma \Delta t/2) + 2 \text{Im } z \sin(\Delta m \Delta t) \right\}$

Asymmetries from same-sign and opposite-sign events:

- $A_{T/CP} = \frac{P(\bar{B}^0 \to B^0) - P(B^0 \to \bar{B}^0)}{P(\bar{B}^0 \to B^0) + P(B^0 \to \bar{B}^0)} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = \frac{1 - |q/p|^4}{1 - |q/p|^4}$

- $A_{CPT/CP}(\Delta t) = \frac{P(B^0 \to B^0) - P(\bar{B}^0 \to \bar{B}^0)}{P(B^0 \to B^0) + P(\bar{B}^0 \to \bar{B}^0)} = \frac{N^{+-}(\Delta t > 0) - N^{+-}(\Delta t < 0)}{N^{+-}(\Delta t > 0) + N^{+-}(\Delta t < 0)}$

- $\approx 2 \frac{-\text{Re } z \sinh(\Delta \Gamma \Delta t/2) + \text{Im } z \sin(\Delta m \Delta t)}{\cosh(\Delta \Gamma \Delta t/2) + \cos(\Delta m \Delta t)}$

- small $\Delta \Gamma$ gives $\text{Re } z \sinh(\Delta \Gamma \Delta t/2) \simeq \Delta \Gamma \times \text{Re } z \times (\Delta t/2)$ — measure $\Delta \Gamma \times \text{Re } z$

- $\Delta t \equiv$ difference of proper decay times $= t^+ - t^-$ for $\ell^+\ell^-$ events

- maximum likelihood fit to sum of PDFs with decay rates for signal & background events

- $\ell^+\ell^+$, $\ell^-\ell^-$: corrections for charge asymmetries in lepton reconstruction/identification

from A. Lusiani
CPT asymmetries with inclusive dilepton events

**B^0\bar{B}^0** Mixing Incl. Dilepton Events

- Measures opposite-sign $\Delta t$-odd di-lepton asymmetry
- $\text{Re}(z) = [0 \pm 120 \text{ (stat.)} \pm 10 \text{ (syst.)}] \cdot 10^{-3}$
- $\text{Im}(z) = [30 \pm 10 \text{ (stat.)} \pm 30 \text{ (syst.)}] \cdot 10^{-3}$

**B^0\bar{B}^0** Mixing w. Inclusive Dileptons

- Same-sign time-integrated di-lepton asymmetry
- Opposite-sign $\Delta t$-odd di-lepton asymmetry
- $|q/p| - 1 = [-0.8 \pm 2.7 \text{ (stat.)} \pm 1.9 \text{ (syst.)}] \cdot 10^{-3}$
- $\text{Im}(z) = [-13.9 \pm 7.3 \text{ (stat.)} \pm 3.2 \text{ (syst.)}] \cdot 10^{-3}$
- $|\Delta \Gamma \cdot \text{Re}(z)| = [7.1 \pm 3.9 \text{ (stat.)} \pm 2.0 \text{ (syst.)}] \cdot 10^{-3}$
B vs K mesons

\[ z = -2\delta = \frac{\delta m - (i/2)\delta \Gamma}{\Delta m + i\Delta \Gamma / 2} \]

\[ \text{B meson system} \]

\[ \text{Im } z = (-13.9 \pm 7.3 \pm 3.2) \times 10^{-3} \]

\[ \Delta m \cong 3.3 \times 10^{-13} \text{ GeV} \]
\[ \Delta \Gamma \ll \Delta m \]

\[ \text{K meson system from Bell-Steinberger relation} \]

\[ \text{Im } \delta = (-0.1 \pm 1.4) \times 10^{-5} \]

\[ \Delta m \cong 3.5 \times 10^{-15} \text{ GeV} \]
\[ \Delta \Gamma \cong 7.3 \times 10^{-15} \text{ GeV} \]
2) Search for decoherence and CPT violation in the neutral B meson system
Correlated B meson pairs

\( \Upsilon(4S) \) produced with \( \beta \gamma = 0.425 \) by the asymmetric collider

\[ \begin{align*}
\ell^+ &\rightarrow B^0 \\
\ell^- &\rightarrow \bar{B}^0
\end{align*} \]

\( e, \mu \)

\( QM: \) region of \( B^0 \) & \( \bar{B}^0 \) coherent evolution

\( B^0 \) and \( \bar{B}^0 \) oscillate coherently. When the first decays, the other is known to be of the opposite flavour, at the same proper time

\[ \Delta t \approx \Delta z / c \beta \gamma \]

N.B.: production vertex position \( z_0 \) not very well known: only \( \Delta z \) is available!
QM predictions for entangled pairs

Time ($\Delta t$)-dependent decay rate into two opposite flavour (OF) states

$$R_{OF} \propto e^{-\Gamma (t_1 + t_2)} (1 + \cos(\Delta m_d \Delta t))$$

idem, into two same flavour (SF) states

$$R_{SF} \propto e^{-\Gamma (t_1 + t_2)} (1 - \cos(\Delta m_d \Delta t))$$

$\Delta m_d$ is the mass difference of the two mass eigenstates

$\Rightarrow$ we obtain the time-dependent asymmetry

$$A_{QM} (\Delta t) = \frac{R_{OF} - R_{SF} (\Delta t)}{R_{OF} + R_{SF}} = \cos(\Delta m_d \Delta t)$$

(ignoring CP violation effects $O(10^{-4})$, and taking $\Gamma_H = \Gamma_L$)

from A. Bay
Events selection and tagging

* First B measured via
  \[ B^0 \rightarrow D^{*}\ell^+\nu \]
  \[ \overline{D}^0\pi_{\text{slow}} \]
  \[ K^+\pi^- \]
  \[ K^+\pi^-\pi^0 \]
  \[ K^+\pi^-\pi^+\pi^- \]

* Remaining tracks are used to guess the flavour of second B,
  from the standard Belle flavour tagging procedure

From a total of \( 152 \times 10^6 \) \( B^0\overline{B}^0 \) pairs: \(~150 \text{ fb}^{-1}\)
  - 6718 OF and 1847 SF events after selection.
  - \( \Delta z \) is obtained from track fit of the two vertices
    and converted into a \( \Delta t \) value

(from A. Bay)
Time dependent asymmetry

We correct bin by bin the OF and SF distributions for:
- Fake D* background
- Uncorrelated D*-leptons, mainly D* and leptons from different B^0
- B^± → D** / ν background
- ~1.5% fraction of wrong flavour associations

![Graph showing the time-dependent asymmetry A(Δt) vs Δt [ps]]
Time dependent asymmetry

After correcting for $\Delta t$ resolution and selection efficiency by a deconvolution procedure:

Fitted value:

$\Delta m_d = (0.501 \pm 0.009) \text{ ps}^{-1}$

$\chi^2 = 5.2 \text{ (11 dof)}$

QM (error from $\Delta m_d$)

$\Rightarrow$ Data fits QM

PRL 99 131802 (2007)

from A. Bay
Time dependent asymmetry

Figure 3: Bottom: time-dependent flavour asymmetry (crosses) and the results of weighted least-squares fits to the (left to right) QM, SD, and PS models (rectangles, showing ±1σ errors on Δm_d). Top: differences Δ ≡ A_{data} − A_{model} in each bin, divided by the total experimental error σ_{tot}. Bins where A_{PS}^{min} < A_{data} < A_{PS}^{max} have been assigned a null deviation: see the text.

PRL 99 131802 (2007)
Test of quantum coherence

\[ |i\rangle = \frac{1}{\sqrt{2}} \left[ |B^0\rangle |\overline{B}^0\rangle - |\overline{B}^0\rangle |B^0\rangle \right] \]

\[ I(f_1, f_2; \Delta t) = \frac{N}{2} \left[ \left| \langle f_1, f_2 \middle| B^0 \overline{B}^0 (\Delta t) \rangle \right|^2 + \left| \langle f_1, f_2 \middle| \overline{B} B^0 (\Delta t) \rangle \right|^2 \right] \]

\[ - (1 - \zeta_{00}) \cdot 2 \Re \left( \langle f_1, f_2 \middle| B^0 \overline{B}^0 (\Delta t) \rangle \langle f_1, f_2 \middle| \overline{B} B^0 (\Delta t) \rangle^* \right) \]

Decoherence parameter:

\[ \zeta_{00} = 0 \rightarrow \text{QM} \]

\[ \zeta_{00} = 1 \rightarrow \text{total decoherence} \]

(Also known as Furry's hypothesis or spontaneous factorization)

[W.Furry, PR 49 (1936) 393]

Feynman described the phenomenon of interference as containing “the only mystery” of quantum mechanics

Special case if \( \zeta = 0 \)

(totally destructive QM interference):

\[ I(f, f; \Delta t = 0) = 0 \]
A simple model for decoherence

The decoherence parameter $\zeta$ depends on the basis in which the spontaneous factorization mechanism is specified:

\[
\begin{bmatrix}
B^H_L\rangle \langle B^L_H
\end{bmatrix}
\Rightarrow
B^H_L\rangle \langle B^L_H
\]

\[
\begin{bmatrix}
B^0\rangle \langle B^0
\end{bmatrix}
\Rightarrow
B^0\rangle \langle B^0
\]

For a generic basis $\{B^\alpha, B^\beta\}$ we can write:

\[
I(f_1, t_1; f_2, t_2) = \frac{N}{2} \left[ |\langle f_1 | B^\alpha(t_1) \rangle \langle f_2 | B^\beta(t_2) \rangle|^2 + |\langle f_1 | B^\beta(t_1) \rangle \langle f_2 | B^\alpha(t_2) \rangle|^2 \right] - 2 \cdot (1 - \zeta_{\alpha, \beta}) \Re \left[ \langle f_1 | B^\beta(t_1) \rangle \langle f_2 | B^\alpha(t_2) \rangle \langle f_1 | B^\alpha(t_1) \rangle^* \langle f_2 | B^\beta(t_2) \rangle^* \right]
\]

(for QM the result is independent on any the basis choice)
Test of quantum coherence

1) Decoherence in $B_H, B_L$: $A \sim (1-\zeta_{BHBL})A_{QM}$

$\zeta_{BHBL} = 0.004 \pm 0.017$ (preliminary)

in K system (KLOE FINAL):

$$\zeta_{SL} = (0.3 \pm 1.8_{\text{STAT}} \pm 0.6_{\text{Syst}}) \times 10^{-2}$$

2) Decoherence in $B^0, \overline{B}^0$: $A \sim (1-\zeta_{B\overline{B}})A_{QM} + \zeta_{B\overline{B}}A_{SD}$

$\zeta_{B\overline{B}} = 0.029 \pm 0.057$

in K system (KLOE FINAL):

$$\zeta_{00} = (1.4 \pm 9.5_{\text{STAT}} \pm 3.8_{\text{Syst}}) \times 10^{-7}$$

obs. in CPV decay channel => terms $\zeta_{00}/|\eta_{+-}|^2$ => high sensitivity to $\zeta_{00}$

K system $A(K_L \to \pi^+\pi^-)/A(K_S \to \pi^+\pi^-) = \eta_+ = \frac{1-\lambda_{+-}}{1+\lambda_{+-}} \ll 1$

B system $A(B_H \to f_{CP})/A(B_L \to f_{CP}) = \eta_{f_{CP}} = \frac{1-\lambda_{f_{CP}}}{1+\lambda_{f_{CP}}}$; $\exists \lambda_{\psi K} = 0.68$
\( \phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^- : \) test of quantum coherence

- Analysed data: \( L = 1.5 \text{ fb}^{-1} \) (2004-05 data)
- Fit including \( \Delta t \) resolution and efficiency effects + regeneration
- \( \Gamma_S, \Gamma_L, \Delta m \) fixed from PDG

**KLOE FINAL:**

\[
\zeta_{00} = \left( 1.4 \pm 9.5_{\text{STAT}} \pm 3.8_{\text{SYST}} \right) \times 10^{-7}
\]

as CP viol. \( O(\eta_{+-}) \sim 10^{-6} \)

\( \Rightarrow \) high sensitivity to \( \zeta_{00} \)

From CPLEAR data, Bertlmann et al. (PR D60 (1999) 114032) obtain:

\[
\zeta_{00} = 0.4 \pm 0.7
\]

In the B-meson system, BELLE coll. (PRL 99 (2007) 131802) obtains:

\[
\zeta_{00}^B = 0.029 \pm 0.057
\]

**Comparison with quantum optics test precisions**

\( \Delta t/\tau_S \)
\[ \phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^- : \text{test of quantum coherence} \]

The decoherence parameter \( \zeta \) depends on the basis in which the spontaneous factorization mechanism is specified (Bertlmann et al. PR D60 (1999) 114032):

\[
| i \rangle = \frac{1}{\sqrt{2}} \left[ | K^0 \rangle | \bar{K}^0 \rangle - | \bar{K}^0 \rangle | K^0 \rangle \right] = \frac{N}{\sqrt{2}} \left[ | K_S \rangle | K_L \rangle - | K_L \rangle | K_S \rangle \right]
\]

\[
I(\pi^+ \pi^-, \pi^+ \pi^-; |\Delta t|) \propto \left\{ e^{-\Gamma_L |\Delta t|} + e^{-\Gamma_S |\Delta t|} - 2 \cdot (1 - \zeta_{SL}) \cdot e^{-(\Gamma_S + \Gamma_L) |\Delta t|/2} \cos(\Delta m |\Delta t|) \right\}
\]

• Analysed data: 1.5 fb\(^{-1}\) (2004-05 data)

**KLOE FINAL**:

\[ \zeta_{SL} = \left( 0.3 \pm 1.8_{\text{STAT}} \pm 0.6_{\text{SYST}} \right) \times 10^{-2} \]

From CPLEAR data, Bertlmann et al. (PR D60 (1999) 114032) obtain:

\[ \zeta_{SL} = 0.13 \pm 0.16 \]

In the B-meson system, BELLE coll. obtains (preliminary):

\[ \zeta_{HL}^B = 0.004 \pm 0.017 \]
Decoherence and CPT violation

Modified Liouville – von Neumann equation for the density matrix of the kaon system:

\[ \dot{\rho}(t) = -iH \rho + i\rho H^+ + L(\rho) \]

extra term inducing decoherence:
pure state => mixed state

Possible decoherence due quantum gravity effects:
Black hole information loss paradox => Possible decoherence near a black hole.

Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, non-trivial space-time fluctuations (generically space-time foam) could give rise to decoherence effects, which would necessarily entail a violation of CPT [2].

J. Ellis et al.[3-6] => model of decoherence for neutral kaons => 3 new CPTV param. \(\alpha,\beta,\gamma\):

\[ L(\rho) = L(\rho; \alpha, \beta, \gamma) \]

At most: \(\alpha, \beta, \gamma = O\left( \frac{M_K^2}{M_{PLANCK}} \right) \approx 2 \times 10^{-20} \text{ GeV} \)

Study of time evolution of single kaons 
decaying in \( \pi^+\pi^- \) and semileptonic final state

**CPLEAR** **PLB 364, 239 (1999)**

\[
\begin{align*}
\alpha &= (-0.5 \pm 2.8) \times 10^{-17} \text{ GeV} \\
\beta &= (2.5 \pm 2.3) \times 10^{-19} \text{ GeV} \\
\gamma &= (1.1 \pm 2.5) \times 10^{-21} \text{ GeV}
\end{align*}
\]

In the complete positivity hypothesis

\[ \alpha = \gamma \quad \beta = 0 \]

\[ \Rightarrow \text{only one independent parameter: } \gamma \]

The fit with \( I(\pi^+\pi^-,\pi^+\pi^-;\Delta t, \gamma) \) gives:

**KLOE FINAL** \hspace{1em} \( L=1.5 \text{ fb}^{-1} \)

\[
\gamma = (0.7 \pm 1.2_{\text{STAT}} \pm 0.3_{\text{SYST}}) \times 10^{-21} \text{ GeV}
\]

terms \( \gamma/(\Delta \Gamma |\eta_+|^2) \)
decoherence & CPTV by QG

Formalism of $\alpha, \beta, \gamma$ could be extended to B mesons (to be done):

\[
L(\rho) = L(\rho; \alpha, \beta, \gamma)
\]

$\alpha, \gamma > 0$, $\alpha\gamma > \beta^2$

At most:

$\alpha, \beta, \gamma = O\left(\frac{M_B^2}{M_{PLANCK}}\right) \approx 2 \times 10^{-18} \text{ GeV}$
In presence of decoherence and CPT violation induced by quantum gravity (CPT operator “ill-defined”) the definition of the particle-antiparticle states could be modified. This in turn could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) to the kaon state:

\[ |i\rangle \propto \left( K^0 \bar{K}^0 - K^0 \bar{K}^0 \right) + \omega \left( K^0 \bar{K}^0 + K^0 \bar{K}^0 \right) \]

\[ \propto (K_S K_L - K_L K_S) + \omega (K_S K_S - K_L K_L) \]

at most one expects:

\[ |\omega|^2 = O\left( \frac{E^2}{M_{PLANCK} \Delta \Gamma} \right) \approx 10^{-5} \Rightarrow |\omega| \sim 10^{-3} \]

In some microscopic models of space-time foam arising from non-critical string theory:

[Bernabeu, Mavromatos, Sarkar PRD 74 (2006) 045014] \[ |\omega| \sim 10^{-4} \div 10^{-5} \]

The maximum sensitivity to \( \omega \) is expected for \( f_1 = f_2 = \pi^+ \pi^- \)

All CPTV effects induced by QG (\( \alpha, \beta, \gamma, \omega \)) could be simultaneously disentangled.
$\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^- :$ CPT violation in correlated K states

Fit of $I(\pi^+ \pi^-, \pi^+ \pi^-; \Delta t, \omega)$:

- Analysed data: 1.5 fb$^{-1}$ (2004-05 data)

**KLOE FINAL**:

\[ \Re \omega = \left( -1.6^{+3.0}_{-2.1}^{\text{STAT}} \pm 0.4^{\text{SYST}} \right) \times 10^{-4} \]

\[ \Im \omega = \left( -1.7^{+3.3}_{-3.0}^{\text{STAT}} \pm 1.2^{\text{SYST}} \right) \times 10^{-4} \]

\[ |\omega| < 1.0 \times 10^{-3} \text{ at 95\% C.L.} \]

In the B system [Alvarez, Bernabeu, Nebot JHEP 0611, 087]:

\[-0.0084 \leq \Re \omega \leq 0.0100 \text{ at 95\% C.L.} \]
In presence of decoherence and CPT violation induced by quantum gravity (CPT operator “ill-defined”) the definition of the particle-antiparticle states could be modified. This in turn could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) to the B meson state:


\[ |i\rangle \propto \left( B^0 \overline{B}^0 - B^0 \overline{B}^0 \right) + \omega \left( B^0 \overline{B}^0 + B^0 \overline{B}^0 \right) \]
Interesting tests of the $\omega$-effect can be performed by looking at the equal-sign di-lepton decay channels.

A first decay $B \to X\ell^\pm$ and a second decay, $\Delta t$ later, $B \to X'\ell^\pm$

$$A_{sl} = \left. \frac{I(\ell^+, \ell^+, \Delta t) - I(\ell^-, \ell^-, \Delta t)}{I(\ell^+, \ell^+, \Delta t) + I(\ell^-, \ell^-, \Delta t)} \right|_{\omega = 0} = 4 \frac{\text{Re}(\varepsilon)}{1 + |\varepsilon|^2} + O((\text{Re} \varepsilon)^2)$$

$$\omega = |\omega| e^{i\Omega}$$

$$I(\ell^\pm, \ell^\pm, \Delta t = 0) \sim |\omega|^2$$
Equal sign di-lepton time asymmetry

• For $\omega = 0$ equal sign di-lepton time asymmetry $A_{sl}$ is exactly time independent
• For $\omega \neq 0$ $A_{sl}$ acquire a time dependence

![Graph](image)

Figure 6.2: Equal-sign dilepton charge asymmetry for different values of $\omega$; $|\omega| = 0$ (solid line), $|\omega| = 0.0005$ (long-dashed), $|\omega| = 0.001$ (medium-dashed), $|\omega| = 0.0015$ (short-dashed). When $\omega \neq 0$ a peak of height $A_{sl}(peak) = 0.77 \cos(\Omega)$ appears at $\Delta t(peak) = 1.12 |\omega| \frac{1}{\Gamma}$, producing a drastic difference, in particular in its time dependence. Observe that the peak, independently of the value of $|\omega|$, can reach enhancements of order $10^3$ the value of the asymmetry when $\omega = 0$.

From E. Alvarez PhD thesis
**EquaL-Sign di-lepton charge asymmetry $\Delta t$ dependence**

Approximate Periodicity of $A_{s1}$ in $\Delta t \Delta m$: terms $\cosh(\Delta \Gamma \Delta t)$ almost constant for small $\Delta \Gamma$

$\Delta t \Delta m \simeq 2\pi \simeq 8.2 \Gamma^{-1} \Delta m$

Peak structure repeats itself at Larger times $\Delta t \Delta m = 2\pi$
Figure 6.5: Reproduction of the experimental results for the $A_{sl}$ asymmetry by Babar [36] and Belle [37] collaborations. The points for the fitting (the constant solid line in each figure) are taken for $\Delta t > 0.8 \Gamma^{-1}$. As it is seen in the figures, the time independence of the $A_{sl}$ asymmetry, as well as its fitting, have not arrived yet to a definite conclusion. Notice also that the $\omega$-effect predicts a second peak at $\Delta t \approx 8.2 \Gamma^{-1}$ ($\Delta z \approx 0.15 cm$, $\Delta t \approx 12.4 \, ps$) which the data cannot discard; see Fig. (6.3b) and text therein.
\[ A_{s1}^{\text{exp}} = 0.0019 \pm 0.0105 \]

[Alvarez, Bernabeu, Nebot JHEP 0611, 087]:

\[-0.0084 \leq \Re \omega \leq 0.0100 \text{ at 95\% C.L.}\]
3) Tests of Lorentz invariance and CPT symmetry in the neutral B meson system
Kostelecky et al. developed a phenomenological effective model providing a framework for CPT and Lorentz violations, based on spontaneous breaking of CPT and Lorentz symmetry, which might happen in quantum gravity (e.g. in some models of string theory). **Standard Model Extension (SME)** [Kostelecky PRD61, 016002, PRD64, 076001]

**CPT violation in neutral B mesons according to SME:**
- CPTV only in mixing, not in decay, at first order
- \( z \) cannot be a constant (momentum dependence)

\[
z = \frac{\gamma_K \left( \Delta a_0 - \vec{\beta}_K \cdot \Delta \vec{a} \right)}{\Delta m - i \Delta \Gamma / 2}
\]

where \( \Delta a_\mu \) are four parameters associated to SME lagrangian terms and related to CPT and Lorentz violation.
CPT and Lorentz invariance violation (SME)

z depends on sidereal time t since laboratory frame rotates with Earth

\[ \beta^\mu \Delta a_\mu = \gamma_K \left[ \Delta a_0 + \beta_K \Delta a_z \cos \chi \right. \\
+ \beta_K \Delta a_y \sin \chi \sin \Omega t \\
+ \beta_K \Delta a_x \sin \chi \cos \Omega t \] 

Ω: Earth’s sidereal frequency
χ: angle between the z lab. axis and the Earth’s rotation axis
CPT and Lorentz invariance violation (SME)

$z$ depends on sidereal time $t$ since laboratory frame rotates with Earth

$$\beta^\mu \Delta a_\mu = \gamma_K \left[ \Delta a_0 + \beta_K \Delta a_z \cos \chi \\ + \beta_K \Delta a_y \sin \chi \sin \Omega t \\ + \beta_K \Delta a_x \sin \chi \cos \Omega t \right]$$

$$z = z_0 + z_1 \cos(\Omega t + \phi)$$

(\text{in general } z \text{ lab. axis is non-normal to Earth’s surface})

\(\Omega\): Earth’s sidereal frequency
\(\chi\): angle between the $z$ lab. axis and the Earth’s rotation axis
CPT and Lorentz invariance violation (SME)

\[ CPT \text{ violation in SM Lorentz violating extension (SME): V.A. Kostelecky, Phys. Rev. D, 64, 076001, 2001} \]

\[ z \approx \frac{\beta^\mu \Delta a_\mu}{\Delta m - i\Delta \Gamma / 2} \quad \text{with} \quad \begin{cases} 
\beta^\mu = (\gamma, \gamma \vec{\beta}) \\
\Delta a_\mu = r_{q_1} a_{\mu q_1} - r_{q_2} a_{\mu q_2} 
\end{cases} \quad \text{constant 4-vector w.r.t. Sun rest frame}
\]

- \( q_i = \text{meson quarks, } r_{q_i} = \text{quark-binding and normalization} \)

- \( \beta^\mu \Delta a_\mu \) is real \( \implies \text{Im}(z) = \frac{\Delta \Gamma}{2 \Delta m} \text{Re}(z) \ll \text{Re}(z) \)

- \( \beta^\mu \Delta a_\mu = \gamma \left[ \Delta a_0 - \beta \Delta a_\gamma \cos \chi - \beta \sin \chi \left( \Delta a_\gamma \sin \Gamma + \Delta a_\chi \cos \Gamma \right) \right] \quad \chi = \text{angle between } \text{BABAR boost and earth rotation axis, } \text{cos} \chi \approx 0.628, \quad \beta \gamma \approx 0.55 \)

- \( z = z_0 + z_1 \cos (\Gamma t + \phi) \quad \text{sidereal time changes angle between } \Delta a_\mu \text{ and } \beta^\mu \)

- \[ \text{measure } A_{\text{CPT/CP}} \text{ as before but as function of sidereal time, searching for periodic variations} \]
CPT and Lorentz invariance violation (SME)

\[ \text{CPT & Lorentz Viol. w/ Dileptons} \]

**BABAR**

\[ 232 \text{ fb}^{-1} \]

PRL 100, 131802 (2008)

\[ e^+ e^- \rightarrow \mu^+ \mu^- \] events used as control sample without CPT violation

- no evidence for \( z \) variation with sidereal time or period (2.8\( \sigma \) away from zero)
  - no evidence for signal also at \( \sim 20k \) other tested frequencies

\[ \text{Im} z_0 = [ -5.2 \pm 3.6 \text{ (stat.)} \pm 1.9 \text{ (syst.)}] \cdot 10^{-3} \]

\[ \text{Im} z_1 = [ -17.0 \pm 5.8 \text{ (stat.)} \pm 1.9 \text{ (syst.)}] \cdot 10^{-3} \]

- largest systematics from understanding of SVT alignment, \( z \) absolute scale, PDF resolution
CPT and Lorentz invariance violation (SME)

Babar

\[ \Delta a_0 - 0.30 \Delta a_Z \approx (-3.0 \pm 2.4)(\Delta m / \Delta \Gamma) \times 10^{-15} \text{ GeV} \]
\[ \Delta a_X \approx (-22 \pm 7)(\Delta m / \Delta \Gamma) \times 10^{-15} \text{ GeV} \]
\[ \Delta a_Y \approx (-14^{+10}_{-13})(\Delta m / \Delta \Gamma) \times 10^{-15} \text{ GeV} \]

i.e. \( \Delta a_{x,y}, (\Delta a_0 - 0.30 \Delta a_Z) \sim O(10^{-13} \text{ GeV}) \)

KLOE preliminary

In kaons (different param.):

\[ \Delta a_0^K = (0.4\pm1.8) \times 10^{-17} \text{ GeV} \]
\[ \Delta a_X^K = (-6.3\pm6.0) \times 10^{-18} \text{ GeV} \]
\[ \Delta a_Y^K = (2.8\pm5.9) \times 10^{-18} \text{ GeV} \]
\[ \Delta a_Z^K = (2.4\pm9.7) \times 10^{-18} \text{ GeV} \]

KTeV: \( \Delta a_X^K, \Delta a_Y^K < 9.2 \times 10^{-22} \text{ GeV} @ 90\% \text{ CL} \)
4) Future plans
## Prospect for SuperB

<table>
<thead>
<tr>
<th>Test of</th>
<th>Param.</th>
<th>Present best measurement</th>
<th>SuperB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L~50 ab⁻¹</td>
</tr>
<tr>
<td>CPT</td>
<td>Re z</td>
<td>0.00 ± 0.12</td>
<td>± 0.3 × 10⁻³</td>
</tr>
<tr>
<td>CPT</td>
<td>Im z</td>
<td>(−13.9 ± 7.8) × 10⁻³</td>
<td>± 0.6 × 10⁻³</td>
</tr>
<tr>
<td>QM</td>
<td>ζ₀₀</td>
<td>(2.9 ± 5.7) × 10⁻²</td>
<td>± 3.6 × 10⁻³</td>
</tr>
<tr>
<td>QM</td>
<td>ζₛₗ</td>
<td>(0.4 ± 1.7) × 10⁻²</td>
<td>± 1 × 10⁻³</td>
</tr>
<tr>
<td>CPT &amp; QM</td>
<td>α, β, γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT &amp; EPR corr.</td>
<td>Re(ω)</td>
<td>&lt;0.01</td>
<td>± 4 × 10⁻⁴</td>
</tr>
<tr>
<td>CPT &amp; EPR corr.</td>
<td>Im(ω)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT &amp; Lorentz</td>
<td>Δₐ₀₋₀.₃Δₐₚ</td>
<td>(−3.0 ± 2.4) × Δm/ΔΓ × 10⁻¹⁵ GeV</td>
<td>± 1.5 × Δm/ΔΓ × 10⁻¹⁶ GeV</td>
</tr>
<tr>
<td>CPT &amp; Lorentz</td>
<td>Δₐₓ</td>
<td>(−22 ± 7) × Δm/ΔΓ × 10⁻¹⁵ GeV</td>
<td>± 4.4 × Δm/ΔΓ × 10⁻¹⁶ GeV</td>
</tr>
<tr>
<td>CPT &amp; Lorentz</td>
<td>Δₐᵧ</td>
<td>(−14 ± 12) × Δm/ΔΓ × 10⁻¹⁵ GeV</td>
<td>± 7.6 × Δm/ΔΓ × 10⁻¹⁶ GeV</td>
</tr>
</tbody>
</table>
Conclusions

• Neutral meson systems are excellent laboratories for the study of CPT symmetry and the basic principles of Quantum Mechanics;
• Several parameters have been recently measured in B and K systems, in same cases (K) with a precision reaching the interesting Planck’s scale region;
• All results are consistent with no CPT violation and no QM violation
• The K and B systems are very similar but CPT/QM effects may appear differently in the two systems (e.g. energy dependence) => it’s worth improving the precision of the tests in both systems.

• For B mesons a SuperB could improve the statistical uncertainty on several parameters by about one order of magnitude.

• For kaons KLOE (KLOE-2) is restarting (end 2009) ; improvement of precision by one order of magnitude in run phase-2.