
Semileptonic B decays: $|V_{cb}|$ and $|V_{ub}|$

Marcello Rotondo INFN Padova

Semileptonic Decays

- Error on $|V_{ub}/V_{cb}|$ is dominated by $|V_{ub}|$, ~9% with inclusive
 - ~7% from the b-quark mass and b momentum inside the B meson
 - these parameters are extracted using inclusive $B \rightarrow X_c \ell v$ decays (and the $B \rightarrow X_s \gamma$)
- Impossible to study at LHC(b)

Present Status (exp ⊕ theory)

- |*V*_{ub}|
 - predicted with good precision in the CKM fit
 - $|V_{ub}| \times 10^3 = 3.48 \pm 0.16$
 - using esclusive $B \rightarrow \pi \ell v$ decays+Lattice QCD to normalize the Form Factor: good agreement with the CKM fit
 - $|V_{ub}| \times 10^3 = 3.38 \pm 0.35$
 - Inclusive $B \rightarrow X_u \ell v$ decays is larger (1.8-2.5 σ depending on the calculation) than CKM fit (and the exclusive)
 - $|V_{ub}| \times 10^3 = 3.96 \pm 0.15^{+0.20}_{-0.23}$ (average with GGOU)
- V_{cb}
 - Esclusive $B \rightarrow D(*) \ell v$ decays + Lattice QCD:
 - D^* : $|V_{cb}| \times 10^3 = 37.4 \pm 0.8 \pm 1.0$, D: $|V_{cb}| \times 10^3 = 39.7 \pm 1.4 \pm 0.9$
 - Moments of inclusive $B \rightarrow X_c \ell v + B \rightarrow X_s \gamma$ decays:
 - $|V_{cb}| \times 10^3 = 41.5 \pm 0.5 \pm 0.6$

Inclusive $B \rightarrow X_u \ell v$

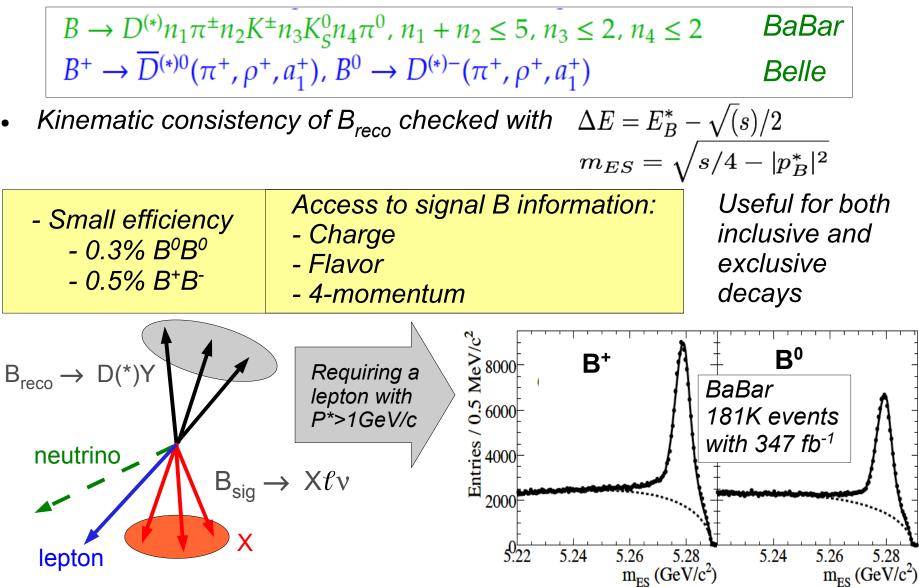
$$\frac{\Gamma(b \to u \ell \nu)}{\Gamma(b \to c \ell \nu)} \approx \frac{|V_{ub}|^2}{|V_{cb}|^2} \approx$$

$$\frac{1}{50}$$

Experiment challenge is to separate $B \rightarrow Xc \ell v$ from signal

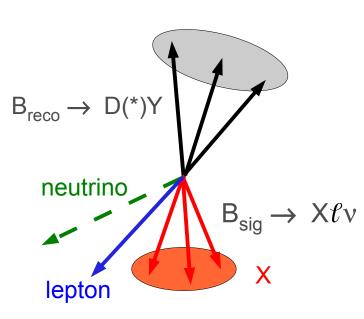
$$m_u^{<} < m_c^{,}$$
 different kinematics:
signal have larger $E_{\ell}^{}$ and q^2

• Measure partial $\Delta B(B \rightarrow X_u \ell v)$ in a region where the S/N is good and the $\Delta \Gamma_u$ is reliably calculable

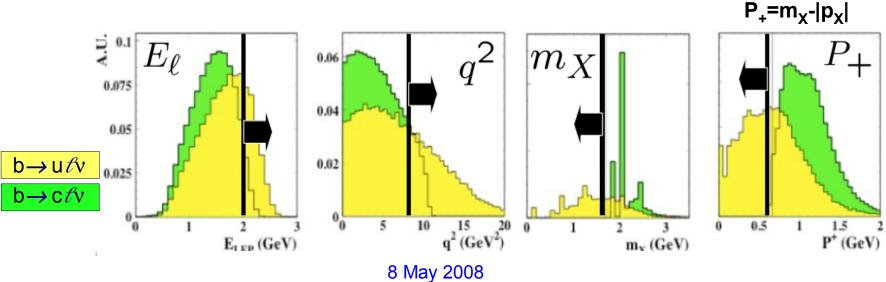

$$\Delta B(B \to X_u \ell \nu) = \tau_B |V_{ub}|^2 \zeta_c$$

Cut dependent constant, from Theory (many frameworks available)

- OPE convergence is compromised: non perturbative effects at O(1/m_b)
 - Light cone distribution of b-quark (Shape Function) is needed
 - Detailed shape not known, in particular the tail, but mean and r.m.s constrained from moment measurement in B→X_cℓv (and B→X_sγ)

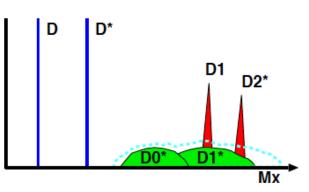

Tagged sample: B_{reco}

• Fully reconstruct one B in hadronic decays

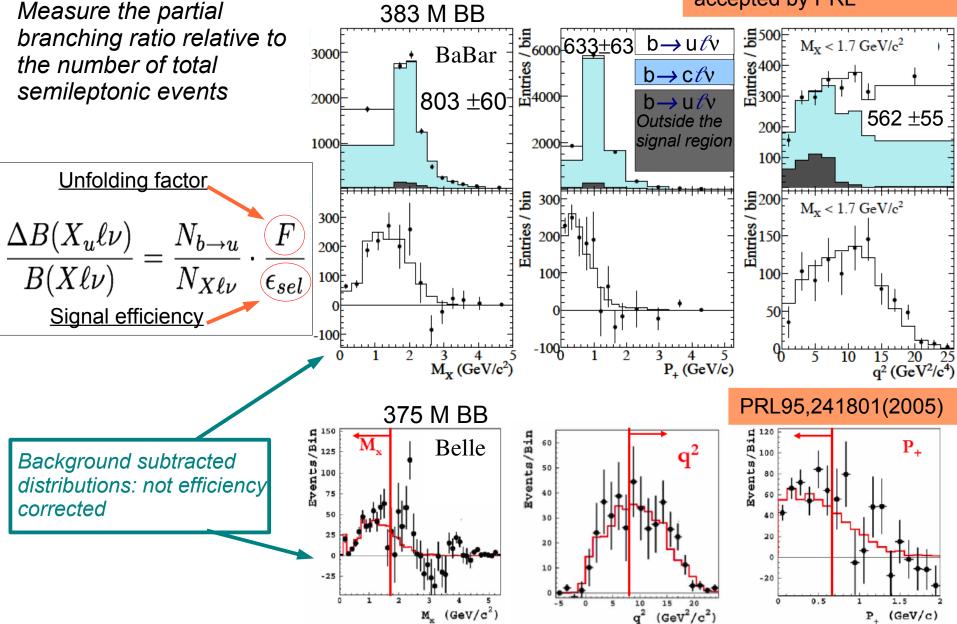


Inclusive |V_{ub}|: strategy

B_{reco} sample allows the best access to kinematics



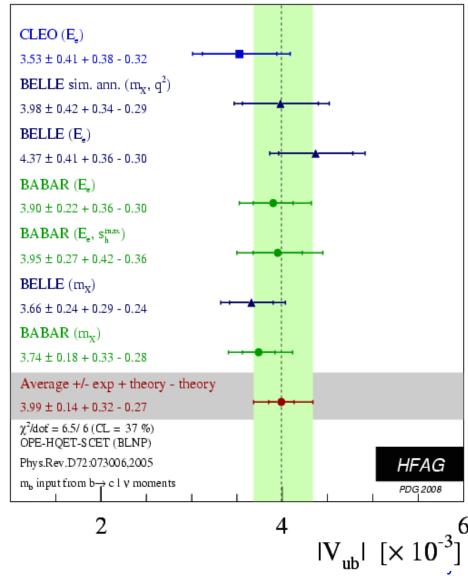
- p_{miss} = $p_{Y(4S)}$ p_{reco} p_X p_{lepton} - X: all remaining particles
- *m_X* and *P*₊ require a sample of *B_{reco}*
- Experimental Resolution leads to irreducible b→cℓv contamination:
 - Require good charged and neutral acceptance (hermeticity)


$B \rightarrow X_c \ell v$ background

- $B \rightarrow X_c \ell v \text{ model: sum of } B \rightarrow D\ell v, B \rightarrow D^* \ell v, B \rightarrow D^{**} \ell v \text{ and } B \rightarrow D(^*) \pi \ell v$
 - $B \rightarrow D\ell v B \rightarrow D^*\ell v : HQET$ based form factor (Caprini et al.)
 - PDG/HFAG branching fractions
 - $B \rightarrow D^{**} \ell v$: Well established narrow states
 - · Parameters for wider are less known
 - · Decay FF from Leibovich et al. (LLSW)
 - $B \rightarrow D(^*)\pi\ell v$: Goity-Robertson
- $B \rightarrow X_c \ell v$ suppression:
 - No additional leptons, to suppress $B \rightarrow DX \ell v$ with $D \rightarrow Y \ell$
 - Require $M_{miss}^2 < 0.5 \text{ GeV}^2$: reduce events with extra v
 - No strangeness to suppress the $b \rightarrow c \rightarrow s$ chain: veto evnts with $K^{+/-}$ and K_s
 - *K_L* cut (used only by Belle)
 - $B^0 \rightarrow D^{*+} \ell v$, reconstruct the soft π^+ (remove about 36% of the bkg, 90% eff.)
 - B^{0/+}→D^{*+/*0}ℓv, exploit the presence of soft π⁰, less efficient but effects on both B⁰ and B⁺ (require studies)

Inclusive |V_{ub}|: results

ArXiv: 0708.3702[hep-ex] accepted by PRL


Systematics

		Belle		TABLE II.	Partial rates to ve errors (in %).	the three	kinemat	tic signal	regions	
		(2005)	-	$\Delta \Phi$	$\Delta \Gamma_{u\ell\nu}(\Delta \Phi)$	Stat	Syst	$b \rightarrow u$	$b \rightarrow c$	
		BaBa (2008)	ar -	M _X	$5.24 \times 10^{-4} \text{ ps}^{-1}$ $7.71 \times 10^{-4} \text{ ps}^{-1}$ $6.89 \times 10^{-4} \text{ ps}^{-1}$	9.1	8.9 7.1 9.3	6.2 6.1 6.4	5.3 2.2 8.7	
Experimental systematics on $\Delta B(B \rightarrow Xu\ell v)$ expressed in %										
Method	Detector effects	Shape function	$ \begin{array}{l} \mathcal{B}(\overline{B} \to X_u \ell \overline{\nu}) \\ X_u = \pi, \rho, \dots \end{array} $) Gluon . splitting	$\mathcal{B}(\overline{B}\to X_c\ell\bar{\nu})$	$B \to D^* \ell^-$ form facto	$\overline{\nu}_{\mathrm{ors}} \mathcal{B}(D)$	$m_{\rm ES}$ fit	Monte C statisti	arlo cs
M_X	1.92	0.90	2.08	1.62	0.87	0.21	0.44		3.22	6.07
$P_+ M_X, q^2$	3.88 3.83	$1.31 \\ 2.43$	$2.22 \\ 2.71$	$1.47 \\ 1.02$	2.80 1.17	$\begin{array}{c} 0.39 \\ 0.55 \end{array}$	$0.73 \\ 0.79$		4.62 4.29	8.38 8.81

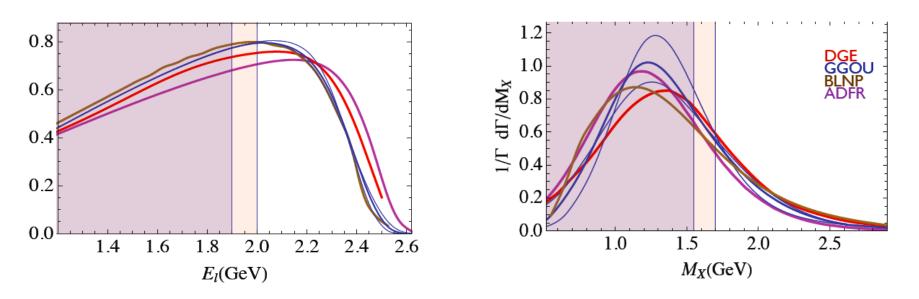
- Detector effects not dominant (thanks to the tagging)
- The selection require complex fits, for example the m_{ES} fits
 - the statistics will improve the fit convergence (but more details to account for!)
- Dominant systematics are in the modelling of signal (resonant and nonresonant) and background contributions

V_{ub} results (HFAG average, BLNP)

Many different theoretical approach
 ⇒many |V_{ub}| values

 Here only BLNP, with m_b from B→Xcℓv Global Fit (Kinetic Scheme), including also uncertainty on the KS⇔SF Scheme translation

$|V_{ub}| = (3.99 \pm 0.14 \pm 0.30) 10^{-3}$


δ Vub	+8.8% -7.7%
Statistical	2.0%
Exp.systematics	2.3%
b→cℓv model	1.3%
<mark>b→uℓ</mark> ν model	1.4%
HQ parameters	7.0% 丼
SF + Sub. SF	0.6%
matching	3.6%
Weak Annihilation	1.3%

For B_{reco} analysis use only m_x cut:

- large unpublished correlations with P+ and q2

Future: spectra

• The only way to test frameworks is to extract spectra

- WA, SF and HQE parameters dependence, and SSF uncertainty are reduced increasing the measured phase space
 - Power dependence on mb scale inversely with the phase space coverage
 - The OPE expantion can be restored

Hadronic Moments in $B \rightarrow X_{\mu} \ell \nu$ decays

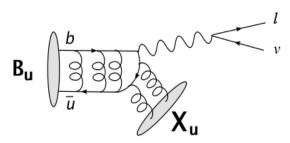
- Measure hadronic mass spectrum over full m_X range (same strategy/datasample used to extract |V_{ub}|)
- Mass moments related to m_b : extract moments with upper cut $m_x^2 < 6.4 \text{ GeV}^2$

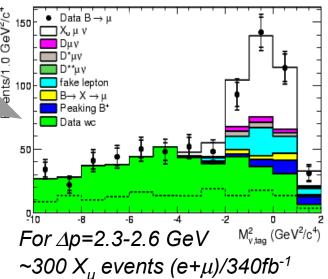
Calculation: Gambino, Ossola, Uraltsev JHEP09(2005)010 First measurement of m_b in $B \rightarrow X_u \ell v$ decays (in the Kinetic scheme)

 $m_{\rm b} = 4.604 \pm 0.250 \, {\rm GeV}$

compatible with Global Fit

Weak annihilation in $B \rightarrow X_u \ell v$

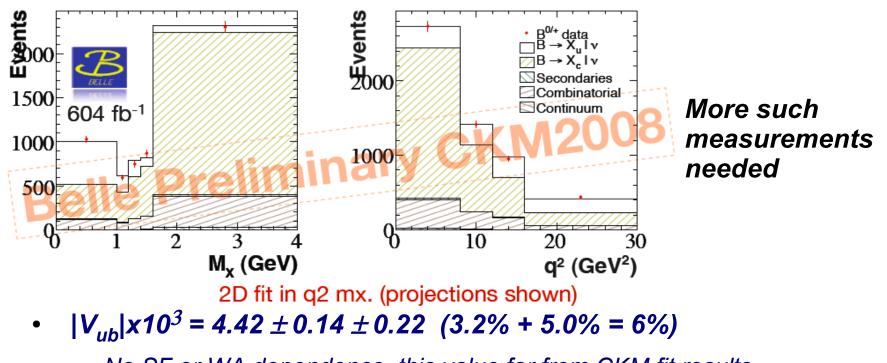

ArXiv: 0708.1753 383 M BB


• Small contribution to $B \rightarrow X_u \ell v$ decays:

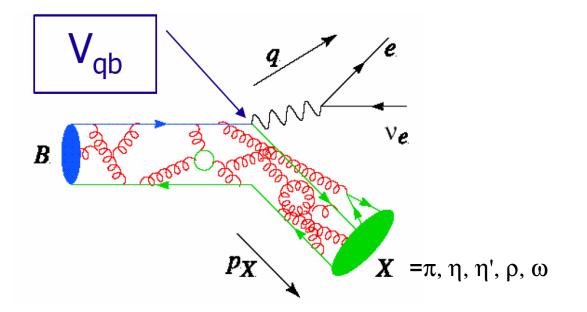
 $\frac{|\Gamma_{WA}|}{\Gamma_{w}} < 7.4\% \ at \ 90\% C.L.$ CLEO, studing the q² spectra PRL96,121801 (2006)

- Introduce difference between B⁰ and B⁺ decays
- Tag with partial reconstructed $B^0 \rightarrow D^{*+} \ell v$
- Neutrino mass from kinematics: $m_v^2 = (P_B P_{D^*} P_{\ell})^2$
 - Compare B⁰ partial rate to charge averaged $B \rightarrow X_u \ell v$ rate in the large p_{ℓ} region (to enhance the WA contribution) PRD73,012006(2006) $A^{+/0} = \frac{\Delta \Gamma^+ - \Delta \Gamma^0}{\Delta \Gamma^+ + \Delta \Gamma^0}$

$$\frac{|\Gamma_{WA}|}{\Gamma_u} < \frac{3.8\%}{f_{WA}(2.3-2.6)} \ at \ 90\% C.L.$$



- With the B_{reco} sample at a Super B factory will be easy to determine the charge asymmetry and even study the q² spectrum
 - Limit on WA at <1% level are easy to reach


Full phase space analysis

- Preliminary Belle analysis
 - *B_{reco}* sample: only PI>1 GeV/c, 90% of the available phase space
 - Multivariate analysis to exploit the many non-linear correlations between kinematics and events variables available with the B_{reco} sample that separate b→ u and b→ c
 - *MM*², *dZ*, *dr*, *Q*_{total}, *N*_{lepton}, *D** partial reco etc

No SF or WA dependence, this value far from CKM fit results 8 May 2008

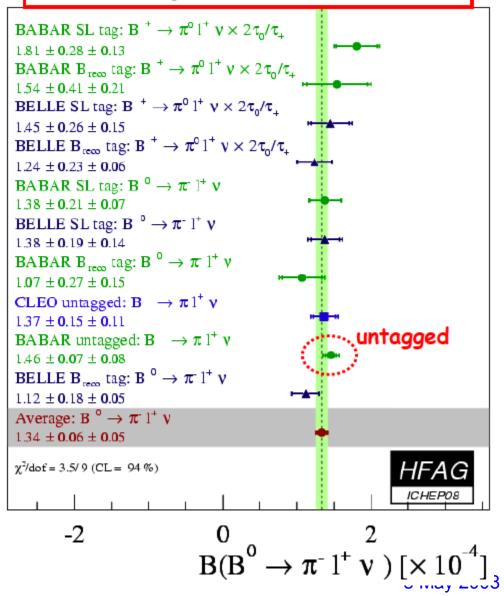
$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 \ p_\pi^3 \ |f_+(q^2)|^2$$

Untagged $B \rightarrow \pi \ell v$

• Extract signal yield in 12 q2 bins from fit to $\Delta E^{"}$ vs $m_{ES}^{"}$

$$\Delta E = E_B^* - \sqrt{(s)}/2 \qquad m_{ES} = \sqrt{s/4 - |p_B^*|^2} \qquad q^2 = (p_B - p_\pi)^2 = (p_\ell + p_\nu)^2$$

Signal
Total: N_{sig} =5000 ev.
~400-500 per q² bin
with 206 fb⁻¹
Continuum
- checked with off
resonance data
 $B \rightarrow X_c f \nu$
- largest backg.
 $B \rightarrow X_u \ell \nu$
- relevant at high q²
- large uncertainty
 $M = k_c f \nu$
- relevant at high q²
- large uncertainty
 $M = k_c f \nu$
- relevant at high q²
- large uncertainty
 $M = k_c f \nu$
- large uncertainty
 $M = k_c f \nu$
- relevant at high q²
- large uncertainty
 $M = k_c f \nu$
- relevant at high q²
- large uncertainty
 $M = k_c f \nu$
- large uncertainty
 $M = k_c f \nu$
- large uncertainty
 $M = k_c f \nu$
- relevant at high q²
- large uncertainty
 $M = k_c f \nu$
- large uncertainty
- large uncertainty
- large uncertainty

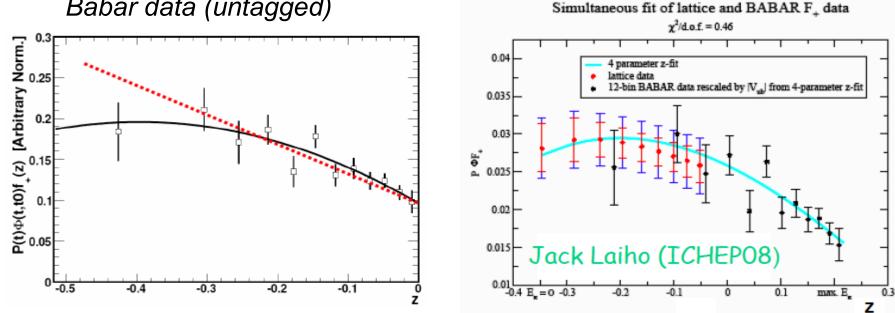

Hadronic Tag $B \rightarrow \pi \ell v$

- Tag one B in hadronic decay
- Know kinematics and flavor of signal B
- Extract signal yields from $M_{miss}^2 \sim M_v^2$ in bins of q^2

$ \overset{\text{* Data}}{\underset{35}{\overset{59}{\overset{\pm}{\overset{\pm}{\overset{\pm}{\overset{\pm}{\overset{\pm}{\overset{\pm}{\overset{\pm}{$	$\frac{50}{49\pm9}$ Data ulv crossfeed Other background		US 10 '	
	\tilde{s}^{40}	13	$B \to \pi^+ \ell \nu$	$B \to \pi^0 \ell \nu$
$\mathbb{E}_{25}[\pi']$		Detector Simulation:		
		Pion track finding eff.	1.0%	-
	20╞╴╶╷╴╶╷╡╗┙┙╹╝╵╸╸	π^0 reconstruction eff.	-	2.0%
╍╞╴╴┍┘╵┟╣╻┍╝		Lepton track finding eff.	1%	1%
₅╞╴╶╵┓┓┓		Lepton identification	2.1%	2.1%
		Pion identification	2.0%	2.0%
Missing mass squared (GeV ²)	Missing mass squared (GeV ²)	Combined	3.2%	3.7%
Clean sample	$N(B\overline{B})$ uncertainty	1.36%	1.36%	
Possible to apply loose cut	Form Factor Shapes:			
- reduce model dependenc	$\pi (\text{LCSR} \rightarrow \text{ISGW2})$	1.5%	0.0%	
		$\rho, \omega \text{ (LCSR} \rightarrow \text{ISGW2)}$	1.8%	0.5%
$Br(\pi^0)x2=(1.24\pm0.2)$	23±0.06)x10 ⁻⁴	Branching Fractions:		
$Br(\pi^+) = (1.12 \pm 0.2)$	$b \rightarrow u \ell \nu / b \rightarrow c \ell \nu$ norm.	0.3%	0.2%	
	8 May 2008	Total systematic error	4.2%	3.9%

 $cor fl_{-1}$

$\mathcal{B} (B^0 \rightarrow \pi^- \ell^+ \nu_{\ell}) = (1.34 \pm 0.06 \pm 0.05) \times 10^{-4}$

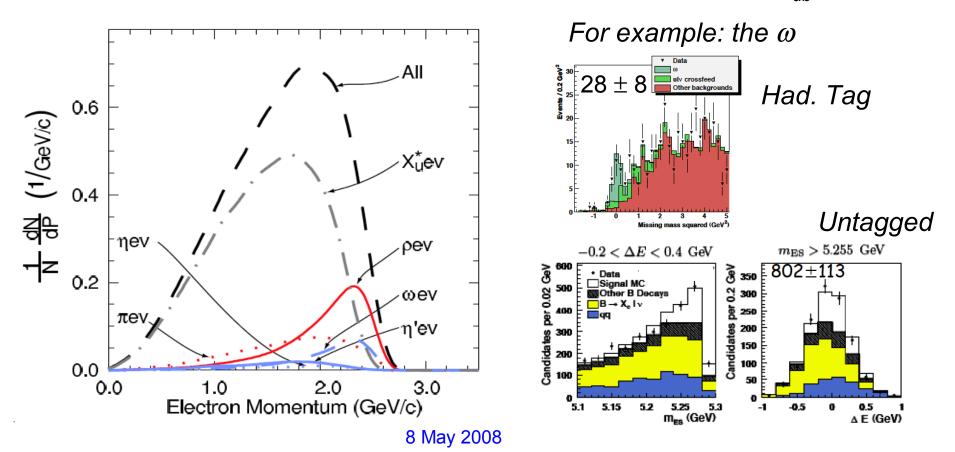


Stat:5% Syst: 4%

- Measurements done with and without recoil B tagging
- With present statistics (Babar+Belle), untagged measurements dominate the average
- And gives useful q² shape information (next slide)
 - Tagged measurements improve the BF accuracy
- Super B flavor:
 - Tagged measurements much cleaner, many systematics can be reduced

extraction

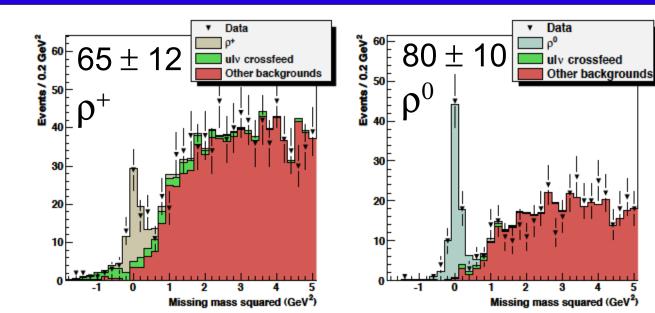
Babar data (untagged)

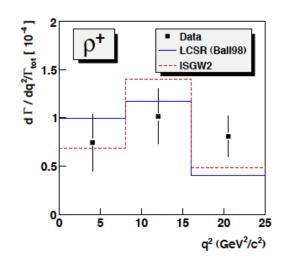

Linear shape or quadratic? LQCD prefer a curvature Esperimentally high q^2 (low z) data are difficult - Large background from $B \rightarrow X_u \ell v$, smaller rate

- New FNAL lattice result, fit to lattice points and Babar $\Delta BF(q^2)$ in z expansion
- $|V_{\mu\nu}| \times 10^3 = 3.38 \pm 0.35$ (Total error 11%, comparable contributions from Lattice stat, syst and experiment)

Need more precise experimental data

X_u sample composition


- The study of the higher mass state
 - Help to constrain theoretical calculations
 - Cross-check |V_{ub}|
 - Understand the composition of the $B \rightarrow X_u \ell v$ events: important systematics for both inclusive and exclusive determination of $|V_{ub}|$



Belle with hadronic tag: 605 fb⁻¹

Very clean sample Three q²-dependent form factors: need a 4 dimentional fit -> high statistics is needed

- Tagged will be soon competitive with the untagged (even with present data)
- Untagged suffers of problems:
 - Large combinatoric due to tracks from the other B
 - Kinematic cuts (e.g. P_{lep}) to suppres the large bkg
 - Increase the model dependence
 - The B→Xℓv bkg very similar to the signal, resulting in large syst. error

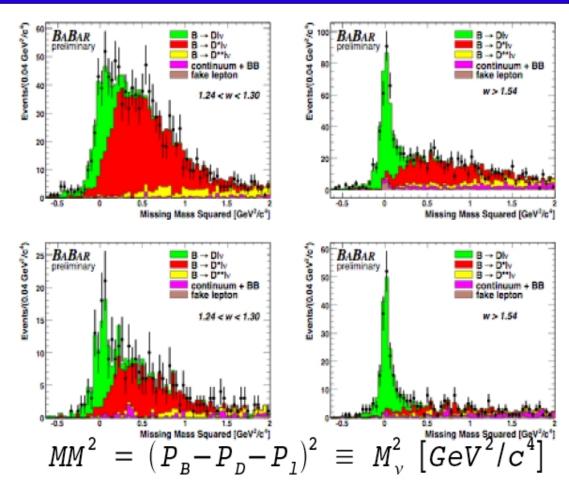
Exclusive |V_{cb}

• Use Caprini et al. Parameterization, for the D:

$$\mathcal{G}(w) = \mathcal{G}(1) \left[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3 \right] \qquad z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

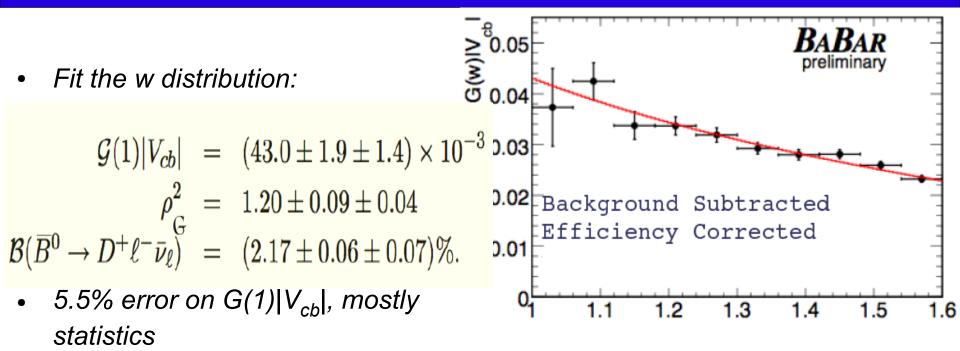
- Lattice QCD calculation at w~1. Un-quenched start to be available
- Quenched available at w>1
 - Tantalo et al. 2007

 $G(1)=1.074 \pm 0.018 \pm 0.016$ (M.Okamoto et al NPPS 140, 461 (2005)) $h_{\mathcal{A}}(1)=0.924 \pm 0.012 \pm 0.019$ (J.Laiho et al arXiv:0710.1111 [hep-lat]


V_{qb}

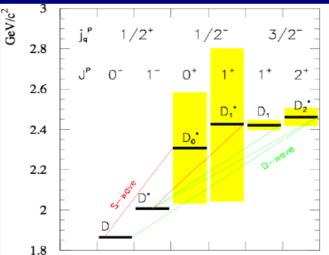
B

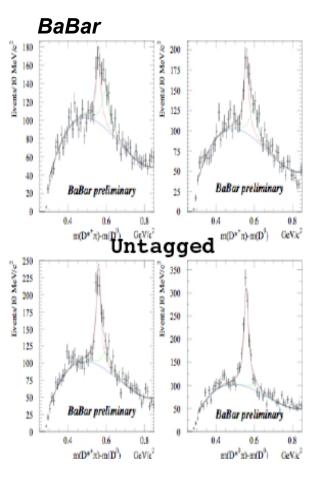
٧٠

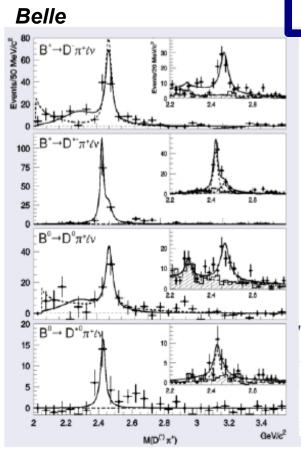

$|V_{cb}|$ and FF with tagged $B \rightarrow D \ell v$

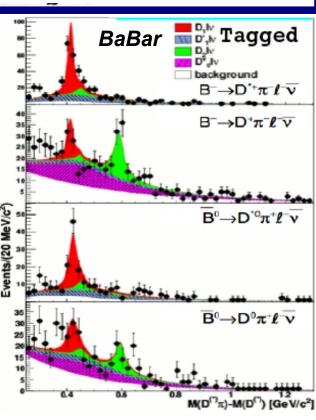
- Use the B_{reco} tag sample
 - Recoil: $B \rightarrow D \ell v$
 - Avoid the use of v-reco
 - Reduce the combinatoric
 - Good w resolution

- Event yield: MM2 fit in 10 w bins (1<w<1.6)
 - D⁰: 2147±69 events/417 fb⁻¹
 - D⁺: 1108±45 events/417 fb⁻¹

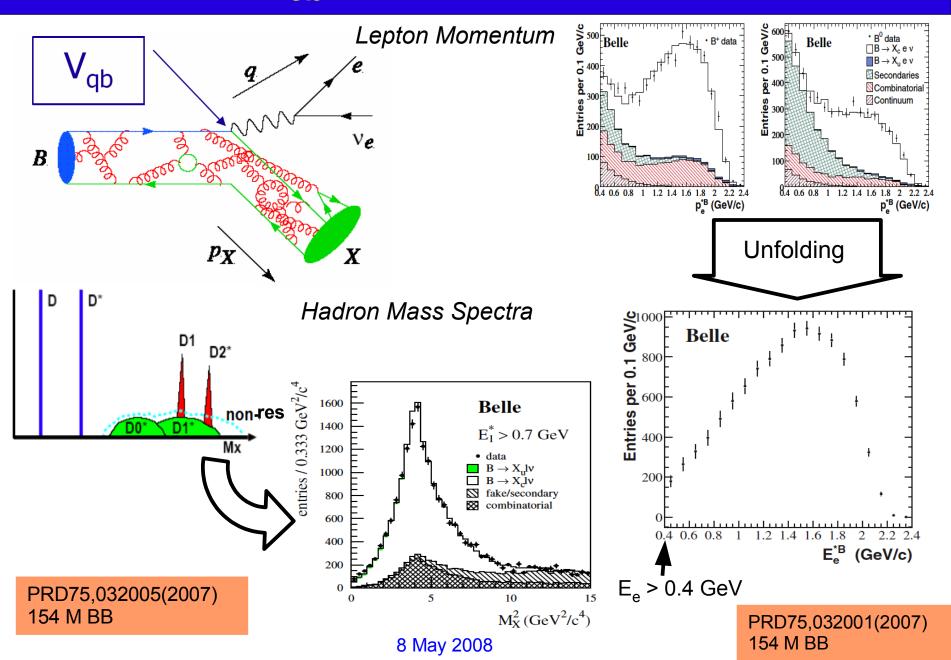

$|V_{cb}|$ and FF with tagged $B \rightarrow D\ell v$



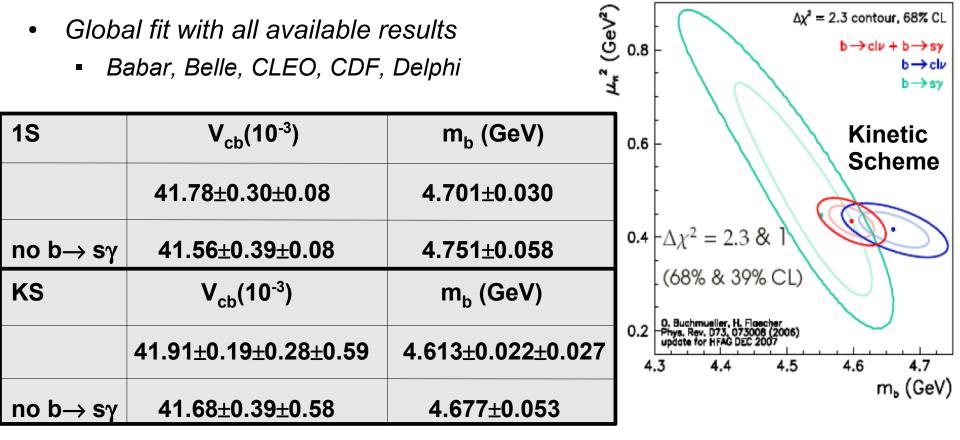

- Easy to improve with more statistics, the limit will be from theory (FF W normalization)
 - Only one unquenched calculation, 2005, not published
- Calculation of FF away from 0 recoil, available in the quenched approximation (w~1.2): very useful, Interpolation instead of Estrapolation
 - Large statistical benefit for D: helicity suppression
 - Large systematic benefit for D*: soft pion


D:** composition

- Untagged: access only to narrow resonances
- Tagged (B_{reco}): both narrow and wide states
 - No evidence of non resonant $D(*)\pi$ production


V_{cb}: present status

- Six independent measurements from B-factories, from D and D* decays provide precise consistent results both as for |V_{cb} | and for shape parameters
- \bigcirc V_{cb} from D almost as precise as from D* . Time to start thinking of correlated errors between G(1) and h_A(1)
- ☺ V_{cb} from exclusive decays might tackle inclusive result. Time to worry ?


$$\begin{bmatrix} |V_{cb}| = (39.7 \pm 1.4_{exp} \pm 0.9_{theo}) 10^{-3} \text{ (D)} \\ |V_{cb}| = (38.1 \pm 0.6_{exp} \pm 0.9_{theo}) 10^{-3} \text{ (D*)} \\ \end{bmatrix}$$
Franco Simonetto INFN & Universita' di Padova

 $\Sigma D+D^*+D^{**} < Inclusive: further investigations are required,$ High statistics studies with tagged sample can help to understandthe X_c anatomy

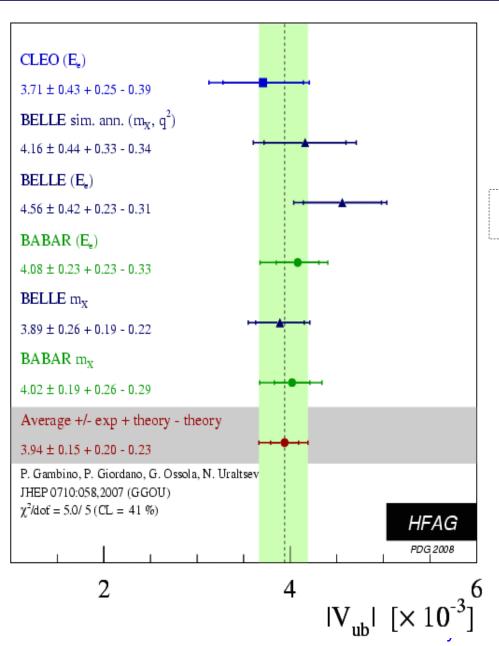
Inclusive |V_{cb}| Observables

Inclusive |V_{cb}|: global OPE fit

>100 measurements, different HQE fit implementations,

results in very good agreement:

 $\sigma_{\rm IVcbl}$ < 2% and $\sigma_{\rm mb}$ < ~1%


Hadronic moments most important input: need tagging Experimentally limited by systematics: - neutral reco, tracking, D**

V_{xb} determination: program

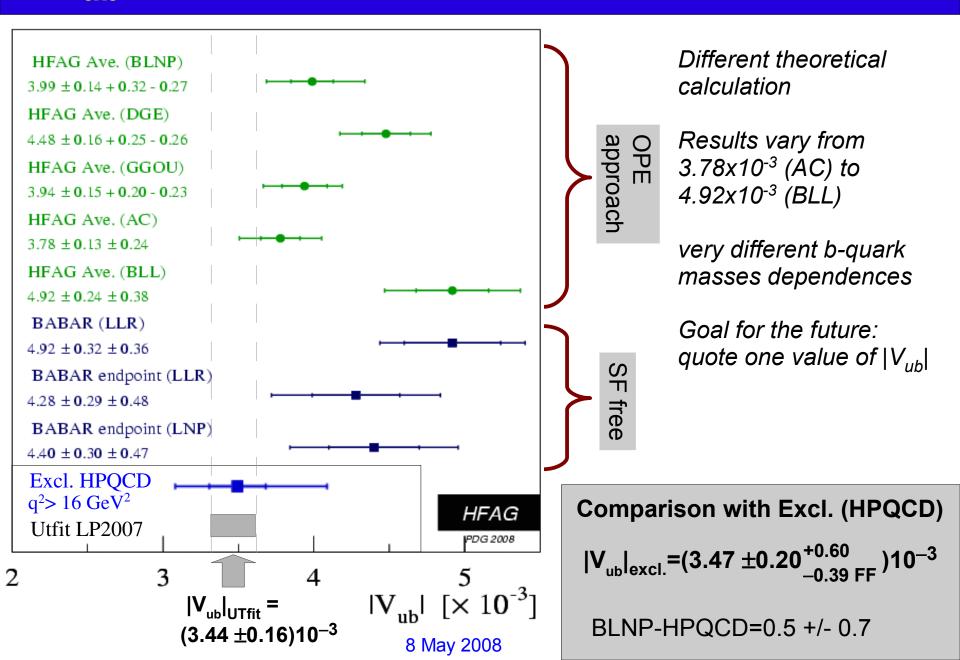
- Impossible to make at LHC(b)
- Super B factory ideal environment to improve the knowledge on semileptonic decays
- Uncertainties from theory dominant: can be improved?
- Use both inclusive and exclusive decays:
 - Complementary
- Use the tagging sample (hadronic and semileptonic) & with high statistics
 - experimental systematics can be reduced and many masurements become possible
- CKM favored $B \rightarrow X_c \ell v$ decays are crucial:
 - Test the theory, extract |V_{cb}|
 - Constrain the background (CKM favored)
 - Crucial input to m_b

Backup Slides

V_{ub} results (HFAG average, GGOU)

Gambino, Giordano, Ossola, Uraltsev JHEP0710:058(2007)

• m_b from Global Fit (Kinetic Scheme), including also $B \rightarrow X s \gamma$


$|V_{ub}| = (3.94 \pm 0.15 \pm 0.23)10^{-3}$

δ Vub	+6.3% -7.0%
Statistical	2.2%
Exp.systematics	2.2%
b→cℓv model	1.3%
<mark>b→uℓ</mark> ν model	1.5%
Non pert	3.9%
Higher order par.	1.8%
q2 tail model	2.6%
Weak Annihilation	-3.1%

For B_{reco} analysis use only m_x cut:

- large unpublished correlations with P+ and q2

V_{ub} results (different calculations)

